Influence of Pressure on the Performance of Heat Exchangers in Ammonia-Water Based Power Cycles

2012 ◽  
Vol 229-231 ◽  
pp. 1085-1089 ◽  
Author(s):  
Kyoung Hoon Kim ◽  
Chul Ho Han

Recently the power generation systems using ammonia-water binary mixture as a working fluid have been attracted much attention for efficient conversion of low-temperature waste heat sources to useful energy forms. In this work, ammonia-water based Rankine (AWR) and regenerative Rankine (AWRR) power generation cycles are comparatively analyzed by investigating the effects of turbine inlet pressure on the performances of heat exchangers in AWR and AWRR systems. Temperature distributions of fluid streams in the heat exchanging devices are closely examined at different levels of turbine inlet pressure under the conditions that the minimum temperature difference of hot and cold streams reaches the prescribed pinch point. Results show that the position of pinch point and temperature distributions are sensitively affected by varying turbine inlet pressure, which might be the most important design consideration in the power systems using a binary working fluid.

Author(s):  
Calin Zamfirescu ◽  
Ibrahim Dincer

In this paper we thermodynamically assess the performance of an ammonia-water Rankine cycle that uses no boiler, but rather the saturated liquid is flashed by a volumetric expander (e.g., reciprocating, centrifugal, screw or scroll type expander) for power generation. This cycle has no pinch point and thus the exergy of the heat source can be better used by matching the temperature profiles of the hot and the working fluids in the benefit of performance improvement. The second feature comes from the use of the ammonia-water mixture that offers further opportunity to better match the temperature profiles at the source and sink level. This fact brings ∼10% improvement of exergy efficiency with respect to the case when a single substance (e.g., steam) is used as working fluid. The influence of the expander efficiency, ammonia concentration and the coolant flow rate is investigated and reported for a case study. The applications of this cycle can be found in low power/low temperature heat recovery from geothermal sources, ocean thermal energy conversion, solar energy or process waste heat etc where the cycle competes with Kalina, supercritical or multi-pressure steam implementations of the Rankine cycle.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Brian M. Fronk ◽  
Kyle R. Zada

Waste heat driven ammonia/water Kalina cycles have shown promise for improving the efficiency of electricity production from low-temperature reservoirs (T < 150 °C). However, there has been limited application of these systems to utilize widely available, disperse, waste heat streams for smaller scale power production (1–10 kWe). Factors limiting increased deployment of these systems include large, costly heat exchangers, and concerns over safety of the working fluid. The use of mini- and microchannel (D < 1 mm) heat exchangers has the potential to decrease system size and material cost, while also reducing the working fluid inventory, enabling penetration of Kalina cycles into these new markets. However, accurate methods of predicting the heat and mass transfer in microscale geometries must be available for designing and optimizing these compact heat exchangers. In the present study, the effect of different heat and mass transfer models on the calculated Kalina cycle condenser size is investigated at representative system conditions. A detailed heat exchanger model for a liquid-coupled microchannel ammonia/water condenser is developed. The heat exchanger is sized using different predictive methods to provide the required heat transfer area for a 1 kWe Kalina system with a source and sink temperature of 150 °C and 20 °C, respectively. The results show that for the models considered, predicted heat exchanger size can vary by up to 58%. Based on prior experimental results, a nonequilibrium approach is recommended to provide the most accurate, economically sized ammonia/water condenser.


Author(s):  
Brian M. Fronk ◽  
Kyle R. Zada

Thermally driven ammonia/water Kalina cycles have shown some promise for improving the efficiency of electricity production from low temperature reservoirs (T < 200°C). However, there has been limited application of these systems to exploiting widely available, disperse, waste heat streams for smaller scale power production (∼ 1 kWe). Factors limiting increased deployment of these systems include large, costly heat exchangers, and concerns over safety of the working fluid. The use of mini and microchannel (D < 1 mm) heat exchangers has the potential to decrease system size and cost, while also reducing the working fluid inventory, enabling penetration of Kalina cycles into these new markets. To demonstrate this potential, a detailed heat exchanger model for a liquid-coupled microchannel ammonia/water condenser is developed. The heat exchanger is sized to provide the required heat transfer area for a 1 kWe Kalina system with a source and sink temperature of 150° and 20°C, respectively. An additional constraint on heat exchanger size is that the fluid pressure loss is maintained below some threshold value. A parametric analysis is conducted to assess the effect of different correlations/models for predicting the underlying heat and mass transfer and pressure drop of the ammonia/water mixture on the calculated heat exchanger area. The results show that accurately minimizing the size of the overall system is dependent upon validated zeotropic heat and mass transfer models at low mass fluxes and in small channels.


2017 ◽  
Vol 28 (7) ◽  
pp. 725-743 ◽  
Author(s):  
Anahita Moharamian ◽  
Saeed Soltani ◽  
Faramarz Ranjbar ◽  
Mortaza Yari ◽  
Marc A Rosen

A novel cogeneration system based on a wall mounted gas boiler and an organic Rankine cycle with a hydrogen production unit is proposed and assessed based on energy and exergy analyses. The system is proposed in order to have cogenerational functionality and assessed for the first time. A theoretical research approach is used. The results indicate that the most appropriate organic working fluids for the organic Rankine cycle are HFE700 and isopentane. Utilizing these working fluids increases the energy efficiency of the integrated wall mounted gas boiler and organic Rankine cycle system by about 1% and the organic Rankine cycle net power output about 0.238 kW compared to when the systems are separate. Furthermore, increasing the turbine inlet pressure causes the net power output, the organic Rankine cycle energy and exergy efficiencies, and the cogeneration system exergy efficiency to rise. The organic Rankine cycle turbine inlet pressure has a negligible effect on the organic Rankine cycle mass flow rate. Increasing the pinch point temperature decreases the organic Rankine cycle turbine net output power. Finally, increasing the turbine inlet pressure causes the hydrogen production rate to increase; the highest and lowest hydrogen production rates are observed for the working fluids for HFE7000 and isobutane, respectively. Increasing the pinch point temperature decreases the hydrogen production rate. In the cogeneration system, the highest exergy destruction rate is exhibited by the wall mounted gas boiler, followed by the organic Rankine cycle evaporator, the organic Rankine cycle turbine, the organic Rankine cycle condenser, the proton exchange membrane electrolyzer, and the organic Rankine cycle pump, respectively.


Author(s):  
Aristide Massardd ◽  
Gian Marid Arnulfi

In this paper three Closed Combined Cycle (C3) systems for underwater power generation are analyzed. In the first, the waste heat rejected by a Closed Brayton Cycle (CBC) is utilized to heat the working fluid of a bottoming Rankine Cycle; in the second, the heat of a primary energy loop fluid is used to heat both CBC and Rankine cycle working fluids; the third solution involves a Metal Rankine Cycle (MRC) combined with an Organic Rankine Cycle (ORC). The significant benefits of the Closed Combined Cycle concepts, compared to the simple CBC system, such as efficiency increase and specific mass reduction, are presented and discussed. A comparison between the three C3 power plants is presented taking into account the technological maturity of all the plant components.


2021 ◽  
Author(s):  
Bipul Krishna Saha ◽  
Basab Chakraborty ◽  
Rohan Dutta

Abstract Industrial low-grade waste heat is lost, wasted and deposited in the atmosphere and is not put to any practical use. Different technologies are available to enable waste heat recovery, which can enhance system energy efficiency and reduce total energy consumption. Power plants are energy-intensive plants with low-grade waste heat. In the case of such plants, recovery of low-grade waste heat is gaining considerable interest. However, in such plants, power generation often varies based on market demand. Such variations may adversely influence any recovery system's performance and the economy, including the Organic Rankine Cycle (ORC). ORC technologies coupled with Cryogenic Energy Storage (CES) may be used for power generation by utilizing the waste heat from such power plants. The heat of compression in a CES may be stored in thermal energy storage systems and utilized in ORC or Regenerative ORC (RORC) for power generation during the system's discharge cycle. This may compensate for the variation of the waste heat from the power plant, and thereby, the ORC system may always work under-designed capacity. This paper presents the thermo-economic analysis of such an ORC system. In the analysis, a steady-state simulation of the ORC system has been developed in a commercial process simulator after validating the results with experimental data for a typical coke-oven plant. Forty-nine different working fluids were evaluated for power generation parameters, first law efficiencies, purchase equipment cost, and fixed investment payback period to identify the best working fluid.


2019 ◽  
Vol 116 ◽  
pp. 00062 ◽  
Author(s):  
Parth Prajapati ◽  
Vivek Patel

The present work deals with multi objective optimization of nanofluid based Organic Rankine Cycle (ORC) to utilise waste heat energy. Working fluid considered for the study is R245ca for its good thermodynamic properties and lower Global Warming Potential (GWP) compared to the conventional fluids used in the waste heat recovery system. Heat Transfer Search (HTS) algorithm is used to optimize the objective functions which tends to maximize thermal efficiency and minimize Levelised Energy Cost (LEC). To enhance heat transfer between the working fluid and source fluid, nanoparticles are added to the source fluid. Application of nanofluids in the heat transfer system helps in maximizing recovery of the waste heat in the heat exchangers. Based on the availability and cost, CuO nanoparticles are considered for the study. Effect of Pinch Point Temperature Difference (PPTD) and concentration of nanoparticles in heat exchangers is studied and discussed. Results showed that nanofluids based ORC gives maximum thermal efficiency of 18.50% at LEC of 2.59 $/kWh. Total reduction of 7.11% in LEC can be achieved using nanofluids.


Sign in / Sign up

Export Citation Format

Share Document