scholarly journals Combined Closed Cycle (C3) Systems for Underwater Power Generation

Author(s):  
Aristide Massardd ◽  
Gian Marid Arnulfi

In this paper three Closed Combined Cycle (C3) systems for underwater power generation are analyzed. In the first, the waste heat rejected by a Closed Brayton Cycle (CBC) is utilized to heat the working fluid of a bottoming Rankine Cycle; in the second, the heat of a primary energy loop fluid is used to heat both CBC and Rankine cycle working fluids; the third solution involves a Metal Rankine Cycle (MRC) combined with an Organic Rankine Cycle (ORC). The significant benefits of the Closed Combined Cycle concepts, compared to the simple CBC system, such as efficiency increase and specific mass reduction, are presented and discussed. A comparison between the three C3 power plants is presented taking into account the technological maturity of all the plant components.


2021 ◽  
Author(s):  
Bipul Krishna Saha ◽  
Basab Chakraborty ◽  
Rohan Dutta

Abstract Industrial low-grade waste heat is lost, wasted and deposited in the atmosphere and is not put to any practical use. Different technologies are available to enable waste heat recovery, which can enhance system energy efficiency and reduce total energy consumption. Power plants are energy-intensive plants with low-grade waste heat. In the case of such plants, recovery of low-grade waste heat is gaining considerable interest. However, in such plants, power generation often varies based on market demand. Such variations may adversely influence any recovery system's performance and the economy, including the Organic Rankine Cycle (ORC). ORC technologies coupled with Cryogenic Energy Storage (CES) may be used for power generation by utilizing the waste heat from such power plants. The heat of compression in a CES may be stored in thermal energy storage systems and utilized in ORC or Regenerative ORC (RORC) for power generation during the system's discharge cycle. This may compensate for the variation of the waste heat from the power plant, and thereby, the ORC system may always work under-designed capacity. This paper presents the thermo-economic analysis of such an ORC system. In the analysis, a steady-state simulation of the ORC system has been developed in a commercial process simulator after validating the results with experimental data for a typical coke-oven plant. Forty-nine different working fluids were evaluated for power generation parameters, first law efficiencies, purchase equipment cost, and fixed investment payback period to identify the best working fluid.



2013 ◽  
Vol 597 ◽  
pp. 45-50
Author(s):  
Sławomir Smoleń ◽  
Hendrik Boertz

One of the key challenges on the area of energy engineering is the system development for increasing the efficiency of primary energy conversion and use. An effective and important measure suitable for improving efficiencies of existing applications and allowing the extraction of energy from previously unsuitable sources is the Organic Rankine Cycle. Applications based on this cycle allow the use of low temperature energy sources such as waste heat from industrial applications, geothermal sources, biomass, fired power plants and micro combined heat and power systems.Working fluid selection is a major step in designing heat recovery systems based on the Organic Rankine Cycle. Within the framework of the previous original study a special tool has been elaborated in order to compare the influence of different working fluids on performance of an ORC heat recovery power plant installation. A database of a number of organic fluids has been developed. The elaborated tool should create a support by choosing an optimal working fluid for special applications and become a part of a bigger optimization procedure by different frame conditions. The main sorting criterion for the fluids is the system efficiency (resulting from the thermo-physical characteristics) and beyond that the date base contains additional information and criteria, which have to be taken into account, like environmental characteristics for safety and practical considerations.The presented work focuses on the calculation and optimization procedure related to the coupling heat source – ORC cycle. This interface is (or can be) a big source of energy but especially exergy losses. That is why the optimization of the heat transfer between the heat source and the process is (besides the ORC efficiency) of essential importance for the total system efficiency.Within the presented work the general calculation approach and some representative calculation results have been given. This procedure is a part of a complex procedure and program for Working Fluid Selection for Organic Rankine Cycle Applied to Heat Recovery Systems.



2013 ◽  
Vol 597 ◽  
pp. 87-98
Author(s):  
Dariusz Mikielewicz ◽  
Jan Wajs ◽  
Elżbieta Żmuda

A preliminary evaluation has been made of a possibility of bottoming of a conventional Brayton cycle cooperating with the CHP power plant with the organic Rankine cycle installation. Such solution contributes to the possibility of annual operation of that power plant, except of operation only in periods when there is a demand for the heat. Additional benefit would be the fact that an optimized backpressure steam cycle has the advantage of a smaller pressure ratio and therefore a less complex turbine design with smaller final diameter. In addition, a lower superheating temperature is required compared to a condensing steam cycle with the same evaporation pressure. Bottoming ORCs have previously been considered by Chacartegui et al. for combined cycle power plants [ Their main conclusion was that challenges are for the development of this technology in medium and large scale power generation are the development of reliable axial vapour turbines for organic fluids. Another study was made by Angelino et al. to improve the performance of steam power stations [. This paper presents an enhanced approach, as it will be considered here that the ORC installation could be extra-heated with the bleed steam, a concept presented by the authors in [. In such way the efficiency of the bottoming cycle can be increased and an amount of electricity generated increases. A thermodynamic analysis and a comparative study of the cycle efficiency for a simplified steam cycle cooperating with ORC cycle will be presented. The most commonly used organic fluids will be considered, namely R245fa, R134a, toluene, and 2 silicone oils (MM and MDM). Working fluid selection and its application area is being discussed based on fluid properties. The thermal efficiency is mainly determined by the temperature level of the heat source and the condenser conditions. The influence of several process parameters such as turbine inlet and condenser temperature, turbine isentropic efficiency, vapour quality and pressure, use of a regenerator (ORC) will be presented. Finally, some general and economic considerations related to the choice between a steam cycle and ORC are discussed.



2011 ◽  
Vol 383-390 ◽  
pp. 6614-6620
Author(s):  
Xin Ling Ma ◽  
Xiang Rui Meng ◽  
Xin Li Wei ◽  
Jia Chang ◽  
Hui Li

This paper presents energy analysis, thermodynamic calculation and exergy analysis for waste heat power generation system of Organic Rankine Cycle based on the first and second laws of thermodynamics. In order to improve system performance, for low-temperature waste heat of 120°C and R245fa organic working fluid, using Aspen Plus software conducted simulation, optimization and improvement. Results from these analyses show that decreasing the expander inlet temperature, increasing inlet pressure of the expander, and adding regenerative heater can increase thermal and exergy efficiencies, at the same time reduce system irreversibility.



1991 ◽  
Vol 113 (3) ◽  
pp. 131-137 ◽  
Author(s):  
Aristide Massardo

Space power technologies have undergone significant advances over the past few years, and great emphasis is being placed on the development of dynamic power systems at this time. A design study has been conducted to evaluate the applicability of a combined cycle concept—closed Brayton cycle and organic Rankine cycle coupling—for solar dynamic space power generation systems. In the concept presented here (solar dynamic combined cycle), the waste heat rejected by the closed Brayton cycle working fluid is utilized to heat the organic working fluid of an organic Rankine cycle system. This allows the solar dynamic combined cycle efficiency to be increased compared to the efficiencies of two subsystems (closed Brayton cycle and organic fluid cycle). Also, for small-size space power systems (up to 50 kW), the efficiency of the solar dynamic combined cycle can be comparable with Stirling engine performance. The closed Brayton cycle and organic Rankine cycle designs are based on a great deal of maturity assessed in much previous work on terrestrial and solar dynamic power systems. This is not yet true for the Stirling cycles. The purpose of this paper is to analyze the performance of the new space power generation system (solar dynamic combined cycle). The significant benefits of the solar dynamic combined cycle concept such as efficiency increase, mass reduction, specific area—collector and radiator—reduction, are presented and discussed for a low earth orbit space station application.



Author(s):  
Iva Papes ◽  
Lazhar Abdelli ◽  
Joris Degroote ◽  
Jan Vierendeels

With the increasing importance of minimizing primary energy usage and complying with emission restrictions, a significant interest has been developed towards waste heat recovery from industrial processes. A large portion of this energy is available at low temperatures (350K–400K) but it can be relatively efficiently converted into mechanical power using an Organic Rankine Cycle (ORC). Twin screw expanders can be used as an alternative to turbines with their cheap production costs and well proven efficiencies. In this paper, 3D CFD simulations of a twin screw expander using R245fa as the working fluid are performed. Since the fluid properties show big deviations when using the ideal gas equation of state (EoS), the flow problem has been evaluated using different real gas models. Thermodynamic parameters for the ideal gas EoS, the cubic Aungier Redlich-Kwong EoS and the CoolProp fluid database (open source) were compared in a preliminary study. After that, the models have been included through user-defined functions (UDFs) in ANSYS Fluent and were tested on 3D CFD calculations of a twin screw expander and a simplified expansion model. Several performance indicators such as mass flow rates, pressure-volume diagrams and power output are used to compare different fluid models for R245fa. From the results of this study, it can be concluded that the ideal gas EoS shows big deviations going closer to the saturation vapor line and the deviation in power comparing to the Aungier Redlich-Kwong EoS is around 8%. Conversely, the Aungier Redlich-Kwong EoS and the CoolProp database present very similar results for this case.



Author(s):  
Vaclav Novotny ◽  
David J. Szucs ◽  
Jan Spale ◽  
Hung-Yin Tsai ◽  
Michal Kolovratnik

Combined systems for power production and thermally activated cooling have a high potential for improving the efficiency and utilisation of thermal systems. In this regard, various configurations have been proposed and are comprehensively reviewed. They are primarily based on absorption systems and the implementation of multiple levels of complexity and flexibility. The configuration of the absorption power and cooling combined cycle proposed herein has wide commercial applicability owing to its simplicity. The configuration of the components is not new. However, the utilisation of aqueous salt solutions, the comparison with ammonia chiller and with absorption power cycles, the focus on parameters that are important for real-life applications, and the comparison of the performances for constant heat input and waste heat recovery are novel. The proposed cycle is also compared with a system based on the organic Rankine cycle and vapour compression cycle. An investigation of its performance proves that the system is suitable for a given range of boundary conditions from a thermodynamic standpoint, as well as in terms of system complexity and technical feasibility. New possibilities with regard to added power production have the potential to improve the economics and promote the use of absorption chiller systems.



Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 946
Author(s):  
Xiaoqiang Hong ◽  
Feng Shi

This paper aims to present a comparative study into the cascade and series configurations of the organic Rankine cycle based small-scale solar combined cooling, heating and power system for civil application. The energy performance of the systems is studied by developing a thermodynamic model. The simulation model is validated using the literature results. Analyses of the research results indicated that the cascade system can achieve maximum value of the primary energy efficiency of 13.4% for cooling and power generation under solar collecting temperature of 115 °C in cooling mode. The cascade system has more cooling output and less electricity output in cooling mode compared with the series system. In heating mode, the single solar organic Rankine cycle (ORC) operation can achieve highest primary energy efficiency of 19.6% for heating and power generation under solar collecting temperature of 100 °C. Systems with R141b as ORC working fluid show better performance than those with R123 and R1233zd(E).



2021 ◽  
Vol 7 (3) ◽  
pp. 024-045
Author(s):  
Iniobong Gregory Frank ◽  
B. Nkoi ◽  
I. E. Douglas

In this research, Organic Rankine Cycle (ORC) is used to recover heat from exhaust gas of a four-stroke diesel engine. After retrofitting ORC to the engine, Brake power increased from 10473.91 kW to combined – cycle Brake power of 10736.00kW, thermal efficiency increased from 36.01% to combined – cycle thermal efficiency of 51.32% and Exhaust gas temperature decrease from 358oC to 120oC at the exit of the turbocharger. ORC with R12, R22, R134a and R290 as working fluids at saturation and superheated temperatures, pressures and condenser pressures at different ranges were used to compare refrigerants performance in converting low grade exhaust gas waste heat into useful work. This research presents theoretical analysis on four different refrigerants. Applying the above-mentioned refrigerants as working fluid superheated vapour temperature for R12 is 131.72oC, R134a is 129.37oC, R22 is 113.40oC and R290 is 116.95oC. ORC Power generated by turbine gives 94.98kW, 95.56kW. 130.32kW. 262.64kW respectively, ORC Thermal efficiency gives 36%, 29%, 37% and 38% for R12, R22, R134a, and R290 respectively. Combined – cycle power for each of the refrigerant gives 10568.89kW, 10604.23kW, 10569.47kW and 10736.00kW respectively, combined – cycle thermal efficiency for each refrigerant gives 51.14%, 51.18%, 51.14% and 51.32% for R12, R134a, R22 and R290 respectively. R290 offers optimal performance compared to other refrigerants used in this research. The retrofitting of the ORC has saved some supposedly waste exhaust heat energy and has increased both combined cycle power output and thermal efficiency of the engine cycle.



Sign in / Sign up

Export Citation Format

Share Document