Anti-Overturning Stability Numerical Analysis of Single Column Bridge

2012 ◽  
Vol 238 ◽  
pp. 705-708
Author(s):  
Xian Min Zhang ◽  
Bin Dong

Anti-overturning stability numerical analysis of a concrete single column bridge is introduced in this paper. The bearing capacity of the bridge is calculated under the condition of the bearings disengaging. The major factors making the bridge overturn are analyzed, and the preventive measures are given out. The results provide reference for the design of similar projects and driving demand.

2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Junko Okumura

Abstract Background Although the scale of the coronavirus disease (COVID-19) pandemic was relatively small in Japan compared with the rest of the world, the polarisation of areas into high- and low-COVID-19-incidence areas was observed among the 47 prefectures. The aims of this study were not only identifying the factors associated with the polarised COVID-19 pandemic in Japan but also discussing effective preventive measures. Methods This was an ecological study using online survey data which was cross-sectionally conducted by the author. A total of 6000 respondents who resided in 10 low- and 10 high-COVID-19 incidence prefectures, with a wide gap in terms of COVID-19 incidence, in Japan were recruited. Data on COVID-19 cases and geodemographic information were obtained from official government sites. Statistical analyses were conducted to compare variables between the two areas and age groups. Results This study revealed that that age influenced people’s behaviours and perceptions, except one behaviour of ‘wearing facemasks’. The major factors significantly associated with the cumulative number of COVID-19 cases per 100,000 people were ‘commuting by private automobile’ (adjusted odds ratio [AOR], 0.444; 95% confidence interval [CI], 0.394–0.501), ‘commuting by public transportation’ (AOR, 6.813; 95% CI, 5.567–8.336), ‘washing hands’ (AOR, 1.233; 95% CI, 1.005–1.511), ‘opening windows regularly’ (AOR, 1.248; 95% CI, 1.104–1.412), ‘avoiding crowded places (AOR, 0.757; 95% CI, 0.641–0.893), ‘non-scheduled visits to drinking places’ (AOR, 1.212; 95% CI, 1.054–1.392) and ‘perceived risk of contracting COVID-19’ (AOR, 1.380; 95% CI, 1.180–1.612). These factors were strongly associated with age groups. Conclusions Effective preventive measures for COVID-19 transmission can be developed by understanding the characteristics of populated areas, such as public transportation infrastructure and younger people’s movements and behaviours in relation to the population age structure to contain the current epidemic and protect the most vulnerable elderly people.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 68
Author(s):  
Haidar Hosamo ◽  
Iyad Sliteen ◽  
Songxiong Ding

A ring footing is found to be of practical importance in supporting symmetrical constructions for example silos, oil storage container etc. In the present paper, numerical analysis was carried out with explicit code FLAC3D 7.0 to investigate bearing capacity of a ring footing on geogrid reinforced sand. Effects of the ratio n of its inner/outer diameter (Di/D) of a ring footing, an optimum depth to lay the geogrid layer were examined. It was found that an intersection zone was developed in soil under inner-side (aisle) of ring footing, contributing to its bearing capacity. Substantial increase of bearing capacities could be realized if ratio n of a ring footing was around 0.6. Numerical results also showed that, bearing capacity of a ring footing could increase significantly if a single-layer geogrid was laid at a proper depth under the footing. Similar contribution was found if a double-layer geogrid was implemented. However, such increases appeared to be rather limited if a triple-layer geogrid or a four-layer geogrid was used. A double-layer geogrid was recommended to increase the bearing capacity of a ring footing; the depth to lay this double-layer geogrid was also discussed.


2013 ◽  
Vol 376 ◽  
pp. 231-235
Author(s):  
Cheng Li ◽  
Yun Zou ◽  
Jie Kong ◽  
Zhi Wei Wan

Nonlinear numerical analysis for the force performance of frame middle joint is processed in this paper with the finite element software of ABAQUS. Compared with experimental results, numerical analysis results are found to be reasonable. Then the influence of factors such as shaped steel ratio and axial-load ratio are contrastively analyzed. The results show that shaped steel ratio has a greater influence on the bearing capacity and hysteretic performance of the structure, but the axial-load ratio has less influence.


2018 ◽  
Vol 1 (1) ◽  
pp. 801-807 ◽  
Author(s):  
Magdalena Tutak

Abstract In the majority of Polish mines, the exploitation of hard coal is accompanied by the release of considerable amounts of methane. Being flammable and explosive, methane may form an explosive mixture with air once it appears in mine workings. For this reason, the methane hazard is recognised as one of the ventilation risks in the mining industry. This process leads to the formation of air and methane mixture, whose considerable amounts permeate into the atmosphere and the natural environment. This phenomenon is extremely unfavourable because methane is, besides carbon dioxide, yet another gas that exacerbates the greenhouse effect. For this reason, it is increasingly more common to equip mines with methane collection systems in the process of demethylation. These play a vital role for both the natural environment and the safety of work in mines. A reduction of the methane content in headings increases the safety of the working crew and enhances the effectiveness of mining production. The article presents an analysis of the methane-related hazard based on methane emissions during mining exploitation. The analysis was based on the data concerning the amount of methane emitted into the atmosphere and collected by methane extraction systems from 16 coal mines. It led to identification of homogenous mines with similar values of the absolute methane-bearing capacity and ventilation methane-bearing capacity as well as with similar amounts of methane collected by methane extraction systems. The analysis was performed using the non-hierarchical k-average method, which belongs to the group of algorithms for analysing clusters. As a result, the mines were divided into the assumed number of groups. The results obtained made it possible to determine a group of mines in which, in the Author’s opinion, similar systems can be applied for controlling and reducing the methane hazard. These results also open up numerous possibilities for undertaking joint business ventures by the mines in terms of using the collected methane and implementing preventive measures.


2012 ◽  
Vol 204-208 ◽  
pp. 4481-4485
Author(s):  
Bin Wang ◽  
Fu Jun Zhao ◽  
Wen Bin Peng

The current researches on bolt length are rarely concerned with self-bearing characteristics of anchorage surrounding rock,its stress response is seldom used to analyze the bolt effective length. Tangential stress σθ of surrounding rock is sensitive to mechanical variation of surrounding rock plastic failure fields. When surrounding rock bolted, the distribution curve of σθ presents internal and external peak values from the surface rock to the deep rock, which is verified by numerical simulation. Internal peak value of σθ curve increases with the bolt length, which means the bearing capacity of surrounding rock in plastic failure division is improved, correspondingly, external peak value decreases which shows the supporting behavior of the deep rock is weakened. The results of numerical simulations prove that there exists an effective value of bolt length. If bolt length beyond it, the bearing capacity of anchorage surrounding rock cannot be improved obviously.


2013 ◽  
pp. 139-155 ◽  
Author(s):  
Maria E. Suryatriyastuti ◽  
Hussein Mroueh ◽  
Sébastien Burlon

Sign in / Sign up

Export Citation Format

Share Document