Test and Simulation Study on Stiffness of Automotive Door

2012 ◽  
Vol 239-240 ◽  
pp. 690-693
Author(s):  
Hui Ding ◽  
Hong Zhou ◽  
Yong Lian Ren

Automotive door must have adequate stiffness as the important component of an automobile. In this paper, firstly, bending stiffness, torsional stiffness and sinking stiffness of an automotive door were simulated, got the deformation curves of the door in the three conditions. Then an experiment was used to verify the result of finite element analysis. These two methods complemented each other. The stiffness of the door was studied and analyzed by two methods, provided a reference for the improvement of the door.

Author(s):  
Zanza Alessio ◽  
Seracchiani Marco ◽  
Di Nardo Dario ◽  
Reda Rodolfo ◽  
Gambarini Gianluca ◽  
...  

2013 ◽  
Vol 456 ◽  
pp. 55-59
Author(s):  
Ren Bin Zhou ◽  
Xue Bing Liao ◽  
An Qing Ming ◽  
Yong Feng Zhang

Studying the armor-piercing effect of armor-piercing bomb that attacks aluminum target is essential, because the target can be considered the simulation of the actual fight equipment. Based on the hypothesis about building the fraction field, the armor-piercing effect of armor-piercing bomb is analyzed, and the velocity and the intruding depth parameter model of armor-piercing effect are established. Taking a certain armor-piercing bomb as example, the intruding processes of armor-piercing effect are simulated by using the nonlinear finite element analysis program LS-DYNA, while aluminum target simulates the wall of combat equipment in two different conditions. At last, the finite element simulated results are given and analyzed that agree with the experiments.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2576 ◽  
Author(s):  
Adela Rueda Márquez de la Plata ◽  
Pablo Alejandro Cruz Franco

This study aims to investigate the application of finite element calculations to mixed structures of complex materials. As an example, we chose a vault designed by Eugène Viollet-le-Duc in 1850, at which time it was not possible to verify the complexities of the different materials working together in a single structure using these calculation methods. To carry out the simulation, the internal qualities of each material and its current equivalent are taken into account. Thus, the composition of each element is crucial for its integration into the whole structure and its modeling and subsequent calculation. With this research, we show that a finite element analysis can also be applied to structures that are yet to be built. Furthermore, we verify the technological, construction and materials knowledge that has led us here and demonstrate that what was once a utopian vision can now be realized using the structures and materials we have access to today.


2019 ◽  
Vol 14 (4) ◽  
pp. 389 ◽  
Author(s):  
Rang Lin Fan ◽  
Chu Yuan Zhang ◽  
Fang Yin ◽  
Cheng Cheng Feng ◽  
Zhen Dong Ma ◽  
...  

Author(s):  
N Mahendrakumar ◽  
PR Thyla ◽  
PV Mohanram ◽  
C Raja Kumaran ◽  
J Jayachandresh

Nowadays, natural fibre-reinforced composites find applications in almost all engineering fields. This work is an attempt to realise improvement in dynamic characteristics of micro lathe bed using Himalayan nettle (Girardinia heterophylla) polyester (NP) composite as an alternate material. In order to study and validate the improvements envisaged, a cast iron micro lathe bed is considered as reference. Numerical (FE) model of the cast iron micro lathe bed was developed and validated through experimental static and modal analysis. Finite element analysis of the micro lathe bed with the existing cast iron material as well as with nettle–polyester composite as alternate material was also carried out using worst case cutting forces, and based on the relative performances, the need for form design modification for the proposed material was identified. To enhance the bending and torsional stiffness of the nettle–polyester composite lathe bed, various cross sections and rib configurations were studied and the best among them was identified and the same was implemented in the nettle–polyester composite micro lathe bed design. Finite element analysis of the newly designed nettle–polyester composite micro lathe bed was performed and the improvements in dynamic characteristics were evaluated. The newly designed nettle–polyester composite micro lathe bed was fabricated and the predicted enhancement in static and dynamic characteristics was verified experimentally. The studies indicated that nettle–polyester composite could be considered as a suitable alternate to cast iron structures in machine tools.


Sign in / Sign up

Export Citation Format

Share Document