Synchronization of Multi-Chaotic Systems with Ring and Chain Intermittent Connections

2012 ◽  
Vol 241-244 ◽  
pp. 1081-1087 ◽  
Author(s):  
Qun Li Zhang

Based on the intermittent control and the nonlinear measure about l 2-norm, a novel and effective approach to synchronization of multi-chaotic systems with ring and chain connections is investigated. The proposed approach offers a design procedure for multi-chaos synchronization of a large class of chaotic systems. Numerical simulations of multi-chaotic Lorenz systems are given to illustrate the main results by choosing appropriate coupling coefficients by using the intermittent controllers.

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Zhang Qunli

A novel and effective approach to synchronization analysis of neural networks is investigated by using the nonlinear operator named the generalized Dahlquist constant and the general intermittent control. The proposed approach offers a design procedure for synchronization of a large class of neural networks. The numerical simulations whose theoretical results are applied to typical neural networks with and without delayed item demonstrate the effectiveness and feasibility of the proposed technique.


2016 ◽  
Vol 26 (06) ◽  
pp. 1650093 ◽  
Author(s):  
Michaux Kountchou ◽  
Patrick Louodop ◽  
Samuel Bowong ◽  
Hilaire Fotsin ◽  
Jurgen Kurths

This paper deals with the problem of optimal synchronization of two identical memristive chaotic systems. We first study some basic dynamical properties and behaviors of a memristor oscillator with a simple topology. An electronic circuit (analog simulator) is proposed to investigate the dynamical behavior of the system. An optimal synchronization strategy based on the controllability functions method with a mixed cost functional is investigated. A finite horizon is explicitly computed such that the chaos synchronization is achieved at an established time. Numerical simulations are presented to verify the effectiveness of the proposed synchronization strategy. Pspice analog circuit implementation of the complete master-slave-controller systems is also presented to show the feasibility of the proposed scheme.


2016 ◽  
Vol 40 (4) ◽  
pp. 1177-1187 ◽  
Author(s):  
Hua Wang ◽  
Jian-Min Ye ◽  
Zhong–Hua Miao ◽  
Edmond A Jonckheere

This paper presents finite-time chaos synchronization of time-delay chaotic systems with uncertain parameters. According to the proposed method, a lot of coupled items can be treated as zero items. Thus, the whole system can be simplified greatly. Based on robust chaotic synchronization, secure communication can be realized with a wide range of parameter disturbance and time-delay. Numerical simulations are provided to illustrate the effectiveness of the proposed method.


2010 ◽  
Vol 24 (27) ◽  
pp. 5269-5283
Author(s):  
TIANSHU WANG ◽  
XINGYUAN WANG

This paper studies a type of single scroll attractor chaos system. Based on the research of Jiang et al. the global synchronization method is designed, and moreover, the author uses a combined synchronization of linear and nonlinear feedback, active control, single vector and unidirectional coupling synchronization three methods else, the problem of synchronization between same and different chaotic systems are realized by the four methods, respectively. The range of control function parameter is discussed according to the Routh–Hurwitz criterion and numerical simulations show the effectiveness of them.


2021 ◽  
pp. 002029402110211
Author(s):  
Jiunn-Shiou Fang ◽  
Jason Sheng-Hong Tsai ◽  
Jun-Juh Yan ◽  
Li-Huseh Chiang ◽  
Shu-Mei Guo

In this paper, the design of hybrid H-infinity synchronization control for continuous chaotic systems based on sliding mode control (SMC) is considered. H-infinity discrete sliding mode controllers integrated with the digital redesign approach are newly designed to achieve robust chaos synchronization. By the proposed design procedure, an H-infinity discrete-time SMC can be easily obtained to guarantee the robustness of synchronization even if the system is disturbed with unmatched perturbations. Besides, since the saturation function is adopted to eliminate the unexpected chattering phenomenon, this paper also discusses the effect of saturation function in multi-input multi-output (MIMO) SMC and the upper bounds of sliding mode trajectories are obtained which is not indicated in the literature. Finally, we perform the simulation to verify the effectiveness of the proposed controller.


2021 ◽  
Vol 26 (6) ◽  
pp. 993-1011
Author(s):  
Mei Liu ◽  
Jie Chen ◽  
Haijun Jiang ◽  
Zhiyong Yu ◽  
Cheng Hu ◽  
...  

In this paper the problem of synchronization for delayed chaotic systems is considered based on aperiodic intermittent control. First, delayed chaotic systems are proposed via aperiodic adaptive intermittent control. Next, to cut down the control gain, a new generalized intermittent control and its adaptive strategy is introduced. Then, by constructing a piecewise Lyapunov auxiliary function and making use of piecewise analysis technique, some effective and novel criteria are obtained to ensure the global synchronization of delayed chaotic systems by means of the designed control protocols. At the end, two examples with numerical simulations are provided to verify the effectiveness of the theoretical results proposed scheme.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jianeng Tang

Chaos synchronization of different fractional order time-delay chaotic systems is considered. Based on the Laplace transform theory, the conditions for achieving synchronization of different fractional order time-delay chaotic systems are analyzed by use of active control technique. Then numerical simulations are provided to verify the effectiveness and feasibility of the developed method. At last, effects of the fraction order and the time delay on synchronization are further researched.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Hua Wang ◽  
Hang-Feng Liang ◽  
Peng Zan ◽  
Zhong-Hua Miao

This paper proposes a new fractional-order approach for synchronization of a class of fractional-order chaotic systems in the presence of model uncertainties and external disturbances. A simple but practical method to synchronize many familiar fractional-order chaotic systems has been put forward. A new theorem is proposed for a class of cascade fractional-order systems and it is applied in chaos synchronization. Combined with the fact that the states of the fractional chaotic systems are bounded, many coupled items can be taken as zero items. Then, the whole system can be simplified greatly and a simpler controller can be derived. Finally, the validity of the presented scheme is illustrated by numerical simulations of the fractional-order unified system.


2014 ◽  
Vol 65 (2) ◽  
pp. 97-103 ◽  
Author(s):  
Rajagopal Karthikeyan ◽  
Vaidyanathan Sundarapandian

Abstract This paper investigates the hybrid chaos synchronization of identical Wang four-scroll systems (Wang, 2009), identical Liu-Chen four-scroll systems (Liu and Chen, 2004) and non-identical Wang and Liu-Chen four-scroll systems. Active control method is the method adopted to achieve the hybrid chaos synchronization of the four-scroll chaotic systems addressed in this paper and our synchronization results are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the active control method is effective and convenient to hybrid synchronize identical and different Wang and Liu-Chen four-scroll chaotic systems. Numerical simulations are also shown to illustrate and validate the hybrid synchronization results derived in this paper.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
A. E. Matouk

This work investigates chaos synchronization between two different fractional order chaotic systems of Lorenz family. The fractional order Lü system is controlled to be the fractional order Chen system, and the fractional order Chen system is controlled to be the fractional order Lorenz-like system. The analytical conditions for the synchronization of these pairs of different fractional order chaotic systems are derived by utilizing Laplace transform. Numerical simulations are used to verify the theoretical analysis using different values of the fractional order parameter.


Sign in / Sign up

Export Citation Format

Share Document