The 3D Numerical Simulation and Settlement Control Study for City Tunnel Crossing High Fill Geological Area of Gravelly Soils

2012 ◽  
Vol 256-259 ◽  
pp. 1235-1242
Author(s):  
Qian Dong ◽  
Hong Yu Wan ◽  
Fan Lin Kong ◽  
Bao Yun Zhao

Three-dimensional finite element model of tunnel-soil-structures interaction was set up to analyze the causes of settlement and structural cracking when tunnel crossing complex gravelly soil area. It simulated the real tunnel excavation process of Chongqing Metro Line 3. Based on analysis and monitoring results, improved technical measures were used to control settlement, such as advance strengthening, excavation speed control and so on. The latest monitoring results indicate that vault and ground settlement are controlled, and convergence value is reduced significantly. The 3D numerical simulation analysis method provides reference for similar projects, and improvement of technical measures is conducive to settlement control.

2011 ◽  
Vol 189-193 ◽  
pp. 2196-2199
Author(s):  
Ling Li Meng ◽  
Yan Qun Huang ◽  
Ming Liu

Since it is inconsistent and uncontrollable in the experiment, any variance in specimen dimensions, welding parameters and testing conditions will influence the consistency of testing results to some extent. In this paper, the Finite Element Method(FEM) is employed to solve this problem. A three-dimensional finite element model is established to simulate the deformation of I-steel during gas tungsten arc welding (TIG) with FEM software, which is set up to analysis the deformation of I-steel with different welding sequences.


2012 ◽  
Vol 446-449 ◽  
pp. 2206-2209
Author(s):  
Jin Long Wang

Three-dimensional finite element model of the mine escape capsule is established. With the different values of explosion shock waves, simulation analysis of the entry locker is performed by using ABAQUS. The simulation results indicate that the mine escape capsule is safe and available if the surge pressure of shock waves is less than 3.5Mpa.


1994 ◽  
Vol 116 (4) ◽  
pp. 567-573 ◽  
Author(s):  
Wei Xu ◽  
Joseph Genin

The Waste Isolation Pilot Plant (WIPP) is a repository vault, mined deep into a salt strata. It eventually closes in on itself, encapsulating its contents. At room temperature salt may be regarded as a linear, isotropic, viscoelastic material. In this study, using triaxial compression test results on salt, we determine the relaxation functions and set up the boundary value problem for the encapsulation mechanism of a salt vault. Closure of the repository as a function of time is determined using a three-dimensional finite element model. The Tresca failure criterion is used to predict the stability of the repository. Finally, the study is validated by comparing our results to in-situ measured data.


2015 ◽  
Vol 723 ◽  
pp. 171-175
Author(s):  
Hai Yan Huang ◽  
Ai Min Gong ◽  
Yong Qiu ◽  
Zen An Wangliang

A three-dimensional finite element model and an experimental model of a reservoir spillway tunnel are used to analyze the flow velocity changes. The basic numerical simulation theory and the experimental theory and method are firstly introduced. The water characteristic is obtained such as velocity, water surface curve, jet trajectory length, water pressure, etc. The water jet is Z shaped. The velocity, pressure and water flow of the whole spillway are gotten in Ansys software. The velocity measured in the test and the data computed with software are compared. The experimental results are agreement with the numerical results. The analysis and experimental progress and results show that the numerical model and the test method are feasible and well-suited for using in actual design problems.


2011 ◽  
Vol 243-249 ◽  
pp. 3427-3431 ◽  
Author(s):  
Lian Xu Shi ◽  
Nan Zhang

The museum is adjacent to a subway tunnel, cultural relics may be damaged by the vibration induced by subway transit, so the vibration influence of museum must be strictly controlled. By building the three-dimensional finite element model which contains floating slab and isolation ditch, the calculation and analysis for each layer vibration acceleration value of the museum caused by the subway will be done. The results of the study indicate that vibration acceleration value were not more than vibration control limits, vibration reduction and isolation reach the predetermined purpose.


2012 ◽  
Vol 430-432 ◽  
pp. 1311-1314
Author(s):  
Zheng Zhi Luo ◽  
Yi Su Pan

Welding characteristics of MIG welding for aluminum alloy extrusions are studied. In this article, the aluminum alloy is EN AW-6005A. The welding heat source and the welding processing of aluminum alloy extrusions are discussed. A three dimensional finite element model has been developed to dynamically simulate the welding process. The investigations focus on the comparison the welding heat resource of simulation and section of the experiments parts. And the residual stress of numerical simulation and tests are compared. It’s help to optimize the MIG welding processes and improve the welding quality for aluminum alloy extrusion.


2013 ◽  
Vol 459 ◽  
pp. 641-645
Author(s):  
Yu Zhuo Jia ◽  
Mei Qi Wang ◽  
Jun Zhang ◽  
Jing Liu

Using the software of ABAQUS,for the Geological conditions that the upper part is the clay and the Lower part is the rock..The model of digging plus rock bolt Complex environmentally undisturbed soil foundation combined with soil.Which analysis by the numerical simulation.Refer to the test compound type foundations Dimensions,get a three-dimensional finite element model.Applying the same concentration and test loads.Get the oad-displacement curve obtained by calculation.Measured values with the experimental results was very close to,This proved the feasibility of numerical simulation methods.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Sign in / Sign up

Export Citation Format

Share Document