3D Numerical Simulation and Experimental Analysis of Spillway Tunnel

2015 ◽  
Vol 723 ◽  
pp. 171-175
Author(s):  
Hai Yan Huang ◽  
Ai Min Gong ◽  
Yong Qiu ◽  
Zen An Wangliang

A three-dimensional finite element model and an experimental model of a reservoir spillway tunnel are used to analyze the flow velocity changes. The basic numerical simulation theory and the experimental theory and method are firstly introduced. The water characteristic is obtained such as velocity, water surface curve, jet trajectory length, water pressure, etc. The water jet is Z shaped. The velocity, pressure and water flow of the whole spillway are gotten in Ansys software. The velocity measured in the test and the data computed with software are compared. The experimental results are agreement with the numerical results. The analysis and experimental progress and results show that the numerical model and the test method are feasible and well-suited for using in actual design problems.

2004 ◽  
Vol 39 ◽  
pp. 1-8 ◽  
Author(s):  
Carlos Martín ◽  
Francisco Navarro ◽  
Jaime Otero ◽  
María L. Cuadrado ◽  
María I. Corcuera

AbstractA new three-dimensional finite-element model of the steady-state dynamics of temperate glaciers has been developed and applied to Johnsons Glacier, Livingston Island, Antarctica, with the aim of determining the velocity and stress fields for the present glacier configuration. It solves the full Stokes system of differential equations without recourse to simplifications such as those involved in the shallow-ice approximation. Rather high values of the stiffness parameter B (∼0.19–0.23MPaa1/3) are needed to match the observed ice surface velocities, although these results do not differ much from those found by other authors for temperate glaciers. Best-fit values of the coefficient k in the sliding law (*2.2–2.7 x 103m a–1MPa–2) are also of the same order of magnitude as those found by other authors. The results for velocities are satisfactory, though locally there exist significant discrepancies between computed and observed ice surface velocities, particularly for the vertical ones. This could be due to failures in the sliding law (in particular, the lack of information on water pressure), the use of an artificial down-edge boundary condition and the fact that bed deformation is not considered. For the whole glacier system, the driving stress is largely balanced by the basal drag (80% of the driving stress). Longitudinal stress gradients are only important in the divide areas and near the glacier terminus, while lateral drag is only important at both sides of the terminal zone.


2012 ◽  
Vol 430-432 ◽  
pp. 1311-1314
Author(s):  
Zheng Zhi Luo ◽  
Yi Su Pan

Welding characteristics of MIG welding for aluminum alloy extrusions are studied. In this article, the aluminum alloy is EN AW-6005A. The welding heat source and the welding processing of aluminum alloy extrusions are discussed. A three dimensional finite element model has been developed to dynamically simulate the welding process. The investigations focus on the comparison the welding heat resource of simulation and section of the experiments parts. And the residual stress of numerical simulation and tests are compared. It’s help to optimize the MIG welding processes and improve the welding quality for aluminum alloy extrusion.


2012 ◽  
Vol 256-259 ◽  
pp. 1235-1242
Author(s):  
Qian Dong ◽  
Hong Yu Wan ◽  
Fan Lin Kong ◽  
Bao Yun Zhao

Three-dimensional finite element model of tunnel-soil-structures interaction was set up to analyze the causes of settlement and structural cracking when tunnel crossing complex gravelly soil area. It simulated the real tunnel excavation process of Chongqing Metro Line 3. Based on analysis and monitoring results, improved technical measures were used to control settlement, such as advance strengthening, excavation speed control and so on. The latest monitoring results indicate that vault and ground settlement are controlled, and convergence value is reduced significantly. The 3D numerical simulation analysis method provides reference for similar projects, and improvement of technical measures is conducive to settlement control.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2021 ◽  
Vol 11 (5) ◽  
pp. 2225
Author(s):  
Fu Wang ◽  
Guijun Shi ◽  
Wenbo Zhai ◽  
Bin Li ◽  
Chao Zhang ◽  
...  

The steel assembled support structure of a foundation pit can be assembled easily with high strength and recycling value. Steel’s performance is significantly affected by the surrounding temperature due to its temperature sensitivity. Here, a full-scale experiment was conducted to study the influence of temperature on the internal force and deformation of supporting structures, and a three-dimensional finite element model was established for comparative analysis. The test results showed that under the temperature effect, the deformation of the central retaining pile was composed of rigid rotation and flexural deformation, while the adjacent pile of central retaining pile only experienced flexural deformation. The stress on the retaining pile crown changed little, while more stress accumulated at the bottom. Compared with the crown beam and waist beam 2, the stress on waist beam 1 was significantly affected by the temperature and increased by about 0.70 MPa/°C. Meanwhile, the stress of the rigid panel was greatly affected by the temperature, increasing 78% and 82% when the temperature increased by 15 °C on rigid panel 1 and rigid panel 2, respectively. The comparative simulation results indicated that the bending moment and shear strength of pile 1 were markedly affected by the temperature, but pile 2 and pile 3 were basically stable. Lastly, as the temperature varied, waist beam 2 had the largest change in the deflection, followed by waist beam 1; the crown beam experienced the smallest change in the deflection.


2007 ◽  
Vol 129 (6) ◽  
pp. 1028-1034 ◽  
Author(s):  
Liang Wang ◽  
Sergio Felicelli

A three-dimensional finite element model was developed to predict the temperature distribution and phase transformation in deposited stainless steel 410 (SS410) during the Laser Engineered Net Shaping (LENS™) rapid fabrication process. The development of the model was carried out using the SYSWELD software package. The model calculates the evolution of temperature in the part during the fabrication of a SS410 plate. The metallurgical transformations are taken into account using the temperature-dependent material properties and the continuous cooling transformation diagram. The ferritic and martensitic transformation as well as austenitization and tempering of martensite are considered. The influence of processing parameters such as laser power and traverse speed on the phase transformation and the consequent hardness are analyzed. The potential presence of porosity due to lack of fusion is also discussed. The results show that the temperature distribution, the microstructure, and hardness in the final part depend significantly on the processing parameters.


Sign in / Sign up

Export Citation Format

Share Document