Realizing Method of MATLAB Software for Fault Diagnosis of Freight Bearings

2013 ◽  
Vol 273 ◽  
pp. 245-249
Author(s):  
Chun Chao Chen

In order to realize the online fault diagnosis of freight rolling bearing without disassembling, a simulation test platform was established in the laboratory and acoustic emission (AE) sensor of AE-98/R15 was used to acquire AE signals. According to the signal characteristics, MATLAB software was used to analyze features of signals with wavelet packet and to recognize bearing state with probabilistic neural network. These methods have a very good effect for fault diagnosis in the laboratory. The innovation of this paper is that the above methods are effectively used for fault diagnosis and provide a feasible scheme for field application.

2020 ◽  
pp. 107754632094971 ◽  
Author(s):  
Shoucong Xiong ◽  
Shuai He ◽  
Jianping Xuan ◽  
Qi Xia ◽  
Tielin Shi

Modern machinery becomes more precious with the advance of science, and fault diagnosis is vital for avoiding economical losses or casualties. Among massive diagnosis methods, deep learning algorithms stand out to open an era of intelligent fault diagnosis. Deep residual networks are the state-of-the-art deep learning models which can continuously improve performance by deepening the network structures. However, in vibration-based fault diagnosis, the transient property instability of vibration signal usually calls for time–frequency analysis methods, and the characters of time–frequency matrices are distinct from standard images, which brings some natural limitations for the diagnosis performance of deep learning algorithms. To handle this issue, an enhanced deep residual network named the multilevel correlation stack-deep residual network is proposed in this article. Wavelet packet transform is used to preprocess the sensor signal, and then the proposed multilevel correlation stack-deep residual network uses kernels with different shapes to fully dig various kinds of useful information from any local regions of the processed input. Experiments on two rolling bearing datasets are carried out. Test results show that the multilevel correlation stack-deep residual network exhibits a more satisfactory classification performance than original deep residual networks and other similar methods, revealing significant potentials for realistic fault diagnosis applications.


2013 ◽  
Vol 347-350 ◽  
pp. 117-120
Author(s):  
Zhao Ran Hou

Vibration signal was a carrier of fault features of the wind turbine transmission system, it can reflect most of the fault information of the wind turbine transmission system. According to the frequency domain features of the roller bearing fault, wavelet packet transform for feature extraction was proposed as the characteristics of wind turbines in the presence of a large number of transient and non-stationary signals. The characteristics of wavelet packet was analyzed, combined with the wind turbines in the rolling bearing fault characteristic vibration extraction methods, the rolling bearing fault diagnosis was realized through the wavelet packet decomposition and reconstruction, the procedure was given. The simulation result shows that this application can reflect relationship of the failure characteristics and frequency domain feature vectors, also the nonlinear mapping ability of neural networks was played and the fault diagnosis capability enhanced.


2021 ◽  
Author(s):  
tingyu jiang ◽  
Sheng Hong ◽  
Hao Liu

Abstract In order to achieve accurate fault diagnosis of rolling bearing under random noise, a new fault diagnosis method based on wavelet packet-variational mode decomposition (WP-VMD) and kernel extreme learning machine (KELM) optimized by particle swarm optimization (PSO) is proposed in this paper. Firstly, the time-frequency domain feature vectors of the original rolling bearing fault signals are effectively obtained by preprocessing of WMD and decomposition and reconstruction of VMD. Then, the extracted two-dimensional feature vector is input into the KELM neural network for fault identification, and combined with PSO, KELM parameters were optimized. The experimental results show that the proposed method can effectively diagnose the rolling bearing under random noise, with the features of fast speed, stable performance and high accuracy. By comparison, this paper obtains better accuracy and real-time performance with fewer features, which provides a simple and efficient solution for fault diagnosis of rolling bearings.


Sign in / Sign up

Export Citation Format

Share Document