Dynamic Modeling and Modal Analysis of the High-Speed Winder Spindle

2013 ◽  
Vol 281 ◽  
pp. 263-267
Author(s):  
Xi Hou ◽  
Chong Chang Yang ◽  
Sheng Ze Wang

A model of the spindle which is one of key parts of the high-speed winder is presented in this paper. A cantilever type hollow bobbin, a flexible shaft, bearings, Elastomer O-Rings and the frame is included in the model. Comparison between the 3D finite solid element model and the beam element model is made in the modal analysis. Critical speeds and the corresponding whirling motions are obtained from the beam finite element model considering the effect of rotatory inertia, gyroscopic moments, and the damping. The dynamic analysis mentioned above is implemented by using the finite element software ANSYS. Calculation results in this paper facilitate the following dynamic analysis and a foundation for the performance improvement of the high-speed winder.

2017 ◽  
Vol 730 ◽  
pp. 548-553
Author(s):  
Jing Ge ◽  
Hao Jiang ◽  
Zhen Yu Sun ◽  
Guo Jun Yu ◽  
Bo Su ◽  
...  

In this paper, we establish the mechanical property analysis of Single-walled Carbon Nanotubes (SWCNTs) modified beam element model based on the molecular structural mechanics method. Then we study the mechanical properties of their radial direction characteristics using the finite element software Abaqus. The model simulated the different bending stiffness with rectangular section beam elements C-C chemical force field. When the graphene curled into arbitrary chirality of SWCNTs spatial structure, the adjacent beam position will change the moment of inertia of the section of the beam. Compared with the original beam element model and the calculation results, we found that the established model largely reduced the overestimate of the original model of mechanical properties on the radial direction of the SWCNTs. At the same time, compared with other methods available in the literature results and the experimental data, the results can be in good agreement.


2013 ◽  
Vol 446-447 ◽  
pp. 733-737
Author(s):  
Chi Chen ◽  
Hao Yuan Chen ◽  
Tian Lu

In this paper, a 1.5 MW wind turbine tower in Dali, Yunnan Province is used as the research object, using large-scale finite element software Ansys to carry on the dynamic analysis. These natural frequencies and natural vibration type of the first five of tower are obtained by modal analysis and are compared with natural frequency to determine whether the resonance occurs. Based on the modal analysis, the results of the transient dynamic analysis are obtained from the tower, which is loaded by the static wind load and fluctuating wind load in two different forms. By comparing the different results, it provides the basis for the dynamic design of wind turbine tower.


2013 ◽  
Vol 385-386 ◽  
pp. 192-195
Author(s):  
Dong Sheng Zhang ◽  
Jian Jun Zhang

As the less-teeth gear has the less-teeth, the bigger helix angle and the more contact ratio etc. The research of dynamic meshing characteristics makes focus, and modal analysis is the basis of dynamic analysis. In order to get the modal analysis characteristics: firstly the parametric solid modeling is realized through the software of MATLAB and PRO/E; secondly multistage inherent frequencies and mode shapes are achieved by the finite element software of ANSYS Workbench.


2013 ◽  
Vol 300-301 ◽  
pp. 974-977
Author(s):  
Xi Hou ◽  
Hui Zhang ◽  
Sheng Ze Wang

A finite beam element model of the spindle which is one of key parts of the high-speed winder is presented in this paper. Critical speeds of the spindle based on the finite beam element model are obtained considering the effect of rotatory inertia, gyroscopic moments, and the damping. Harmonic response analysis of the high-speed winder spindle is developed in two conditions including static unbalance and couple unbalance. The dynamic analysis mentioned above is implemented by using the finite element software ANSYS. Calculation results in this paper are helpful for the dynamic balance of the high-speed winder spindle.


2013 ◽  
Vol 662 ◽  
pp. 632-636
Author(s):  
Yong Sheng Zhao ◽  
Jing Yang ◽  
Xiao Lei Song ◽  
Zi Jun Qi

The quality of high speed machining is directly related to dynamic characteristics of spindle-toolholder interface. The paper established normal and tangential interactions of BT spindle-toolholder interface based on finite element contact theory, and analysed free modal in Abaqus/Standard. Then the result was compared with the experimental modal analysis. It shows that the finite element model is effective and could be applied in the future dynamic study of high-speed spindle system.


2014 ◽  
Vol 684 ◽  
pp. 341-346
Author(s):  
Heng Yi Yuan

The shaft as an important parts of automobile transmission system, in the process of the car have the effect of rotational speed and torque. Due to the structural characteristics of its low frequency, small stiffness, universal joint, such as the existence of the additional moment drive shaft inevitably exist when high speed vibration phenomenon. So the shaft vibration problems to deal with the vehicle ride comfort, comfort and dynamic performance has important significance. On the basis of the finite element software ANSYS, the physical design of drive shaft. Analyzes the mapping grid finite element model of transmission shaft, facilitate accurate transmission shaft strength calculation. Based on the inherent frequency and vibration model of finite element method to calculate transmission shaft, using experimental modal technology for modal analysis of the shaft, the test results verify the reliability of the finite element model. On this basis, the drive shaft assembly constraint modal finite element analysis, can be used as the basis of further research.


2015 ◽  
Vol 757 ◽  
pp. 39-43
Author(s):  
Jian Feng Guo ◽  
Yi Na Feng ◽  
Yi Tao ◽  
Zhong Bao Qin ◽  
Chang Jiang Liu

Finite element model of dynamic tuned gyroscope (DTG) was founded using finite element software of ANSYS. Natural frequencies and vibration modalities of DTG in cases of both being static and rotating were studied respectively through the method of modal analysis, and also various vibration modalities influence on output of gyroscope was analyzed.


2012 ◽  
Vol 252 ◽  
pp. 158-161
Author(s):  
Hai Ying Li ◽  
Hua Liang Wu ◽  
Xiao Hong Chen ◽  
Sheng Jian Xie

By using finite element software, the paper establishes the steelwork analysis model of the small capacity and economic mechanical parking system and provides the modal analysis of steelwork in both cases of no-load and full load. In this paper, it provides a theoretical basis for the design of mechanical parking system steelwork.


2011 ◽  
Vol 480-481 ◽  
pp. 1511-1515
Author(s):  
Dong Man Yu ◽  
Chang Pei Shang ◽  
Di Wang ◽  
Zhi Hua Gao

Due to high rotation accuracy, high dynamic stiffness, high vibration damping and long life, high-speed spindles supported by hydrodynamic and hydrostatic hybrid bearings are widely applied in the field of high-speed precision machine tools. The basic structure and working principal was detailed introduced, and then demonstrated a series of models and specifications of motorized spindle manufactured by FISCHER company in Switzerland. The finite element model of high-speed motorized spindle was built up and carried out thermal analysis to study the heat generation and heat transfer. With the help of ANSYS finite element software, the temperature field distribution and the temperature rise condition for motorized spindle were analyzed. The result indicates that the front bearing has a higher temperature than that of back bearing. The maximum temperature of inner ring is bigger than that of outer ring.


Sign in / Sign up

Export Citation Format

Share Document