Calculating Mechanics Characteristics of Single-Walled Carbon Nanotube Materials by Finite Element Method

2017 ◽  
Vol 730 ◽  
pp. 548-553
Author(s):  
Jing Ge ◽  
Hao Jiang ◽  
Zhen Yu Sun ◽  
Guo Jun Yu ◽  
Bo Su ◽  
...  

In this paper, we establish the mechanical property analysis of Single-walled Carbon Nanotubes (SWCNTs) modified beam element model based on the molecular structural mechanics method. Then we study the mechanical properties of their radial direction characteristics using the finite element software Abaqus. The model simulated the different bending stiffness with rectangular section beam elements C-C chemical force field. When the graphene curled into arbitrary chirality of SWCNTs spatial structure, the adjacent beam position will change the moment of inertia of the section of the beam. Compared with the original beam element model and the calculation results, we found that the established model largely reduced the overestimate of the original model of mechanical properties on the radial direction of the SWCNTs. At the same time, compared with other methods available in the literature results and the experimental data, the results can be in good agreement.

2013 ◽  
Vol 300-301 ◽  
pp. 974-977
Author(s):  
Xi Hou ◽  
Hui Zhang ◽  
Sheng Ze Wang

A finite beam element model of the spindle which is one of key parts of the high-speed winder is presented in this paper. Critical speeds of the spindle based on the finite beam element model are obtained considering the effect of rotatory inertia, gyroscopic moments, and the damping. Harmonic response analysis of the high-speed winder spindle is developed in two conditions including static unbalance and couple unbalance. The dynamic analysis mentioned above is implemented by using the finite element software ANSYS. Calculation results in this paper are helpful for the dynamic balance of the high-speed winder spindle.


2012 ◽  
Vol 562-564 ◽  
pp. 1373-1376
Author(s):  
Shi Min Xu ◽  
Hua Gui Huang ◽  
Deng Yue Sun

A new manufacturing method of spiral hot bending process for the end sheet of tubular pile was introduced in this paper. A three-dimensional (3-D) thermal-mechanical coupled elastic-plasticity finite element model was setup to simulate the hot bending process, and then, the section deformation mechanism from hot bar by rolling to the end sheet has been investigated from the simulation results. The industry manufacture conditions show that the efficiency and quality has been highly improved by the spiral hot bending process. The thickness variety along the radial direction of the workpiece has also been analyzed, the moment and force during the hot bending was also presented in this paper. These conclusions obtained can guide for the forming technology making for both the end sheet of tubular pile and other ring parts.


Author(s):  
Jin-Sheng Du ◽  
Pui-Lam Ng ◽  
Xiang Ma ◽  
Jian Wang

A fibre-finite-element model of continuous prestressed concrete (PC) composite box girder with corrugated steel webs is established with force-based elements using OpenSees. After the model is validated with existing experimental data, the effects of reinforcement index in upper and lower flanges, effective prestress and concrete strength on the moment redistribution behaviour is analysed. It is shown that increasing the reinforcement index in lower flange or effective prestress can increase the amount of bending moment redistribution, whereas increasing the concrete strength or reinforcement index in upper flange can decrease the amount of bending moment redistribution. By inspecting the sensitivity of parameters, it is found that the reinforcement index in lower flange has the most significant influence on the moment redistribution, followed by the concrete strength and then by the effective prestress, while the reinforcement index in upper flange has only little impact on the moment redistribution. The calculation results are compared with the existing formulas. Finally, a moment redistribution formula is proposed for continuous PC box girder with corrugated steel webs.


2019 ◽  
Vol 815 ◽  
pp. 223-228
Author(s):  
Qin Tian ◽  
Cheng Hao Hang ◽  
Yun Peng Zou ◽  
Zi Xin Wan

In order to improve the mechanical behaviour of bridge steel hoops, the plate shell finite element models of several steel hoops were established by using the general finite element software ABAQUS. Through changing the structural parameters of the stiffening plates, the influence of the stiffening plates on the mechanical properties of the steel hoops was explored. The calculation results show that the stress distribution at both ends of the steel hoop is uneven and there is a phenomenon of stress concentration. The spacing of stiffening plates has great influence on the mechanical properties of steel hoop. Some measures to improve the mechanical properties of steel hoop are given.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012008
Author(s):  
Weigao Qiao ◽  
Lei Yu ◽  
Zhanxi Zhang ◽  
Tongyu Pan

Abstract With the rapid development of electric vehicle industry, more and more attention has been paid to the safety of the automotive battery. The safety of battery in electric vehicle’s frontal collision is the focus of this paper. In the process of simulated collision, the research object is simplified into a battery box. The mechanical properties of the battery monomers were investigated to summarize the mechanical properties of the internal failure of the monomers. Constructing the finite element model of the research object, we focus on the analysis of collision simulation results and propose the improvement measures. According to the test requirements in C-NCAP, the crash simulation of battery box is carried out by using the finite element software called LS-DYNA, which is used in automobile collision to analyze the deformation, stress of the battery box and the most dangerous battery monomer during the frontal collision. The simulation results show that the deformation of the case is obvious, and the protection of the battery is lost in the 50km/h frontal collision condition. By adding EVA foam, the maximum deformation of the battery monomer is reduced by 8.2%. By improving the material of battery case, the maximum deformation is reduced by 12.65%.


2012 ◽  
Vol 503-504 ◽  
pp. 847-850
Author(s):  
Zhi Gang Luo ◽  
Yan Liu ◽  
Sui Yuan Wang ◽  
Bo Diao

To make clear the work mechanism of geosynthetic in asphalt overlay under the aircraft wheel loads, one 3D dimension finite element model was constructed on the basis of the general purpose finite element software ABAQUS. Numerical calculation results with different geosynthetic modulus are presented in this paper, and show that it is very limited for geosynthetic to reduce bottom stress and surface deformation of asphalt overlay, and asphalt overlay bottom is in compression state, thus, geosynthetic can not exert it’s film tension function, namely the main role of geosynthetic is not to bear loads together with asphalt overlay, but to improve stress state of asphalt overlay for preventing cracks appearance or delaying cracks expansion.


2014 ◽  
Vol 543-547 ◽  
pp. 3986-3989
Author(s):  
Quan Zhou ◽  
Jian Guo Hou ◽  
Xiao Chun Zhang

Finite element model of a pre-stressed bridge is established using finite element software ABAQUS according to the characteristics of the bridge. Three static loads are respectively applied to the model to investigate the stress distribution. Numerical calculation results of stress and displacement show that the design of the bridge meets the requirements of static loading.


2013 ◽  
Vol 756-759 ◽  
pp. 194-197
Author(s):  
Quan Zhou ◽  
Jian Guo Hou ◽  
Xiao Chun Zhang

Finite element model of a pre-stressed bridge is established using finite element software Abaqus according to the characteristics of the bridge. Three static loads are respectively applied to the model to investigate the stress distribution. Numerical calculation results of stress and displacement show that the design of the bridge meets the requirements of static loading.


2007 ◽  
Vol 546-549 ◽  
pp. 1591-1596
Author(s):  
Wei Feng Dong ◽  
Yong Li ◽  
Jun Xiao

As for 2.5-D layer-to-layer angle interlock braided composites, the cross section of the warp tow was represented in double-convex lens form, and the center line of the warp tow was along the sinusoid. The arranging characteristic of weft tow fibers along the cross section outline of the longitude fibers was studied in detail. A novel finite element model for 2.5-D braided composites was established to predict elastic modulus. The finite element software ANSYS was adopted to study the mechanical properties of the model and presented its stress nephogram, and the influence of the braided structure parameters on the elastic modulus of this material was analyzed in detail. To validate this model, qualified experimental samples were made by VARTM technique, and then tensile tests were performed to determine the mechanical properties. The results show that the conclusions of finite element method (FEM) fit well with the experimental values, and this model can be used to predict effectively the macro modulus of 2.5-D braided composites.


2014 ◽  
Vol 580-583 ◽  
pp. 1293-1296
Author(s):  
Ya Jiao Dai ◽  
Meng Jia Zhou ◽  
Yu Fei Kong ◽  
Xiao Dong Liu ◽  
Zhi Gang Zhang

Two structural schemes of the Hong Kong-Zhuhai-Macau Immersed Tunnel were compared. In Scheme 1, the prestressed reinforcing bars were to be cut off after installation. And in Scheme 2, the prestressed reinforcing bars will be kept there as they were after installation. A finite element model for sections E12~E15 was built by using the finite element software PLAXIS with consideration to the construction process and different loading conditions to analyze both schemes. The calculation results show that they both meet the design requirements.


Sign in / Sign up

Export Citation Format

Share Document