Optimization of Energy Consumption Using BIM-Based Building Energy Performance Analysis

2013 ◽  
Vol 281 ◽  
pp. 649-652 ◽  
Author(s):  
Dae Kyo Jung ◽  
Dong Hwan Lee ◽  
Joo Ho Shin ◽  
Byung Hun Song ◽  
Seung Hee Park

Recently, the interest in increasing energy efficiency of building energy management system (BEMS) has become a high-priority and thus the related studies also increased. In particular, since the energy consumption in terms of heating and cooling system takes a large portion of the energy consumed in buildings, it is strongly required to enhance the energy efficiency through intelligent operation and/or management of HVAC (Heating, Ventilation and Air Conditioning) system. To tackle this issue, this study deals with the BIM (Building Information Modeling)-based energy performance analysis implemented in Energyplus. The BIM model constructed at Revit is updated at Design Builder, adding HVAC models and converted compatibly with the Energyplus environment. And then, the HVAC models are modified throughout the comparison between the energy consumption patterns and the real-time monitoring in-field data. In order to maximize the building energy performance, a genetic algorithm (GA)-based optimization technique is applied to the modified HVAC models. Throughout the proposed building energy simulation, finally, the best optimized HVAC control schedule for the target building can be obtained in the form of “supply air temperature schedule”.

2018 ◽  
Vol 3 (8) ◽  
pp. 157-166
Author(s):  
Nuttasit Somboonwit ◽  
Nopadon Sahachaisaeree

This research aims to perform, compare, and evaluate Integrated Building Design (IBD) processes, collaborating the Building Information Modeling (BIM) with Building Performance Simulation (BPS) applications to perform energy analysis and to improve the building energy performance of a Generalizable Building Design (GBD), an universal application on health care facilities design in Thailand. The IBD processes produce the simulation results in a harmonious direction. Slight variation of building orientation could alter the extent of energy consumption. The integration of the three measures could minimize the energy consumption greatly. The study addresses limitations of the IBDs in the software integration processes. Keywords: Local Factors in Construction ; Energy Performance Improvement ; Generalizable Healthcare Building Design ; Integrated Building Design. eISSN 2514-751X © 2018. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open-access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. https://doi.org/10.21834/aje-bs.v3i8.288   


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3455
Author(s):  
Aleksandar S. Anđelković ◽  
Miroslav Kljajić ◽  
Dušan Macura ◽  
Vladimir Munćan ◽  
Igor Mujan ◽  
...  

A building energy performance gap can be illustrated as the difference between the theoretical (methodologically defined) and the actual energy consumption. In EU countries, Energy Performance Certificates are issued when buildings are constructed, sold, or leased. This information is the first step in order to evaluate the energy performance of the building stock. In Serbia, when issuing an energy certificate, the adopted national methodology recognizes only energy consumption for heating. The main purpose of this paper is to evaluate the energy gap and estimate the relevance of an Energy Performance Certificate to meet the national energy efficiency or carbon target. An Energy Performance Certificate determines the theoretical residential and commercial building energy efficiency or its “design intent”. This research stresses the necessity of measuring and achieving reductions in actual energy consumption through system regulation and consumers’ self-awareness in buildings. The research compares the performance of the building stock (135) that is connected to the District Heating System (DHS), with its own integrated heat meter, to Individual Gas Boiler (IGB) systems (18), in the city of Novi Sad, Serbia, built after 2014. For the purpose of comparing energy consumption, 16 buildings were selected that are very similar in terms of design, operation, and location. The data used are derived from metered consumption data, official evidence of city service companies, and Energy Performance Certificates of the considered buildings. We have determined that IGB systems have a much wider specific annual performance gap (11.19–101 kWh/m2a) than the buildings in the DHS (3.16–18.58 kWh/m2a).


2019 ◽  
Vol 111 ◽  
pp. 03037
Author(s):  
Merve Atmaca ◽  
Zerrin Yýlmaz

In Turkey, according to TUİK Sectoral Energy Consumption Statistics (2006), the hotel buildings with the highest share, constitute 35% of the total building energy consumption. Energy needs and consumption behaviours differ according to the typology of the building. Energy Performance of Buildings Directive (EPBD) has been adapted to the conditions of Turkey to increase energy and cost efficiency, to reduce the environmental and economic negative effects. The energy consumption and the global cost were investigated under different conditions in an existing hotel building. The paper is unique in its ability to deliver optimum solution through comparison by evaluating energy and cost efficiency at the same time considering sectoral, climatic, technological and economic national conditions when the literature research detailed in the present works about the problem is evaluated in detail. All findings have been compared simultaneously under different climate regions of seasonal and yearly working conditions of selected test hotel to obtain the energy and cost efficiency. Among the proposed improvement scenarios, the optimum scenario is determined in terms of cost and energy efficiency in S18 which has the highest energy efficiency. In this case, both insulation material type and thickness as well as glass type can be bent and through multiple measures can be achieved by 25.7% improvement for energy efficiency.


2014 ◽  
Vol 587-589 ◽  
pp. 283-286 ◽  
Author(s):  
Mei Zhang

According to the current application situation and domestic energy of our current building energy efficiency design analysis software, in view of the current traditional energy-saving design method can't meet the need of practical problems, put forward the BIM (building information modeling) analysis technology and building energy consumption are combined, anew design method for energy saving building. Application of BIM technology to create virtual building model contains all the information architecture, the virtual building model into the building energy analysis software, identification, automatic conversion and analyzing a large number of construction data information includes in the model, which is convenient to get the building energy consumption analysis.


2012 ◽  
Vol 16 (suppl. 2) ◽  
pp. 447-459 ◽  
Author(s):  
Bojan Andjelkovic ◽  
Branislav Stojanovic ◽  
Mladen Stojiljkovic ◽  
Jelena Janevski ◽  
Milica Stojanovic

Heavy mass materials used in building structures and architecture can significantly affect building energy performance and occupant comfort. The purpose of this study was to investigate if thermal mass can improve the internal environment of a building, resulting in lower energy requirements from the mechanical systems. The study was focused on passive building energy performance and compared annual space heating and cooling energy requirements for an office building in Belgrade with several different applications of thermal mass. A three-dimensional building model was generated to represent a typical office building. Building shape, orientation, glazing to wall ratio, envelope insulation thickness, and indoor design conditions were held constant while location and thickness of building mass (concrete) was varied between cases in a series of energy simulations. The results were compared and discussed in terms of the building space heating and cooling energy and demand affected by thermal mass. The simulation results indicated that with addition of thermal mass to the building envelope and structure: 100% of all simulated cases experienced reduced annual space heating energy requirements, 67% of all simulated cases experienced reduced annual space cooling energy requirements, 83% of all simulated cases experienced reduced peak space heating demand and 50% of all simulated cases experienced reduced peak space cooling demand. The study demonstrated that there exists a potential for reducing space heating and cooling energy requirements with heavy mass construction in the analyzed climate region (Belgrade, Serbia).


Author(s):  
Maxim L. Sankey ◽  
Sheldon M. Jeter ◽  
Trevor D. Wolf ◽  
Donald P. Alexander ◽  
Gregory M. Spiro ◽  
...  

Residential and commercial buildings account for more than 40% of U.S. energy consumption, most of which is related to heating, ventilation and air conditioning (HVAC). Consequently, energy conservation is important to building owners and to the economy generally. In this paper we describe a process under development to continuously evaluate a building’s heating and cooling energy performance in near real-time with a procedure we call Continuous Monitoring, Modeling, and Evaluation (CMME). The concept of CMME is to model the expected operation of a building energy system with actual weather and internal load data and then compare modeled energy consumption with actual energy consumption. For this paper we modeled two buildings on the Georgia Institute of Technology campus. After creating our building models, internal lighting loads and equipment plug-loads were collected through electrical sub-metering, while the building occupancy load was recorded using doorway mounted people counters. We also collected on site weather and solar radiation data. All internal loads were input into the models and simulated with the actual weather data. We evaluated the building’s overall performance by comparing the modeled heating and cooling energy consumption with the building’s actual heating and cooling energy consumption. Our results demonstrated generally acceptable energy performance for both buildings; nevertheless, certain specific energy inefficiencies were discovered and corrective actions are being taken. This experience shows that CMME is a practical procedure for improving the performance of actual well performing buildings. With improved techniques, we believe the CMME procedure could be fully automated and notify building owners in real-time of sub-optimal building performance.


Sign in / Sign up

Export Citation Format

Share Document