Virtual Model of Tool Path for Milling Machine at Classical Design Base

2013 ◽  
Vol 282 ◽  
pp. 235-241 ◽  
Author(s):  
Ján Semjon ◽  
Peter Demeč ◽  
Jozef Svetlík

This article focuses on issue of proposal ideal tool paths for machine tools. Model of machine consists from 6 basic knots where milling machine disposes spindle placed in the horizontal direction are. Based on mathematical analysis we can detect the movement of machine axes for uncertainty investigated. The calculated values can be compared with machine model developed in Computer - Aided Design. Defining the shape of workpiece as well as assigning an appropriate instrument can be determined by true value of precision workpiece. After substituting the values of specific dimensions we get the final position of vectors point for contact in tool coordinate systems at individual model solids.

2019 ◽  
Vol 13 (2) ◽  
pp. 279-288 ◽  
Author(s):  
Hiromu Kitahara ◽  
Jun’ichi Kaneko ◽  
Masahiro Ajisaka ◽  
Takeyuki Abe ◽  
Kenichiro Horio ◽  
...  

Three-axis ball end mills are used for the finishing of metal molds of complicated curved surfaces. Typically, a tool path of this shape machining is derived from the geometric calculations of a tool used, and a product model that is a computer aided design (CAD)-based polyhedron approximating the shape. The polyhedron is more complicated to approximate a shape with more curved surfaces, as it is highly time consuming. To solve this problem, methods to accelerate geometric calculations using a computer graphics drawing processing mechanism were proposed. However, these methods cannot guard against errors arising from the approximation of an inverse offset shape using a set of polygons. In the present study, we propose a method to generate tool paths accurately based on calculating the crossing points of the tool axis and defining the offset surface as a set of polygons, cylindrical surfaces, and spherical surfaces. With this method, it is expected that the height of an area, which was divided by fine polygons in previous methods, can be derived accurately, and a tool path can be generated with high precision.


2018 ◽  
Vol Vol.18 (No.1) ◽  
pp. 96-107 ◽  
Author(s):  
Lam NGUYEN ◽  
Johannes BUHL ◽  
Markus BAMBACH

Three-axis machines are limited in the production of geometrical features in powder-bed additive manufacturing processes. In case of overhangs, support material has to be added due to the nature of the process, which causes some disadvantages. Robot-based wire-arc additive manufacturing (WAAM) is able to fabricate overhangs without adding support material. Hence, build time, waste of material, and post-processing might be reduced considerably. In order to make full use of multi-axis advantages, slicing strategies are needed. To this end, the CAD (computer-aided design) model of the part to be built is first partitioned into sub-parts, and for each sub-part, an individual build direction is identified. Path planning for these sub-parts by slicing then enables to produce the parts. This study presents a heuristic method to deal with the decomposition of CAD models and build direction identification for sub-entities. The geometric data of two adjacent slices are analyzed to construct centroidal axes. These centroidal axes are used to navigate the slicing and building processes. A case study and experiments are presented to exemplify the algorithm.


Author(s):  
Hasti Eiliat ◽  
Jill Urbanic

Additive Manufacturing (AM) is the process of joining materials ‘layer by layer’ to make products from Computer Aided Design (CAD) model data. AM processes support faster product realization for a wide selection in industries. The Material Extrusion (ME) process is an AM process that builds a product from thin layers of extruded filaments from a semi-melted material such as a thermoplastic. In commercial systems, the software automatically generates the tool paths for both the model and any necessary supports, based on the curve geometry and the specified build parameters. The interior fill rotates 90° between each layer. Automatically generating the tool path can be the biggest weakness for this process planning strategy. Voids and discontinuities have been observed after evaluating test specimens developed to explore mechanical characteristics. Choosing an optimal raster orientation and bead width will help minimize voids and discontinuities in each layer. A mathematical model is introduced in this paper to find optimal raster orientation and bead widths based on the geometry of the slice for selected 2D extruded parts. As well, preliminary quality assessment metrics are introduced. Void analysis is performed to evaluate solution approaches, and the results compared. The future work will investigate utilizing multiple bead widths for a layer to minimize voids, and developing more comprehensive quality metrics to highlight problematic regions.


2006 ◽  
Vol 129 (2) ◽  
pp. 400-406 ◽  
Author(s):  
R. Molina-Carmona ◽  
A. Jimeno ◽  
R. Rizo-Aldeguer

Background. Tool path generation problem is one of the most complexes in computer aided manufacturing. Although some efficient algorithms have been developed to solve it, their technological dependency makes them efficient in only a limited number of cases. Method of Approach. Our aim is to propose a model that will set apart the geometrical issues involved in the manufacturing process from the purely technology-dependent physical issues by means of a topological system. This system applies methods and concepts used in mathematical morphology paradigms. Thus, we will obtain a geometrical abstraction which will not only provide solutions to typically complex problems but also the possibility of applying these solutions to any machining environment regardless of the technology. Presented in the paper is a method for offsetting any kind of curve. Specifically, we use parametric cubic curves, which is one of the most general and popular models in computer aided design (CAD)/computer aided manufacturing (CAM) applications. Results. The resulting method avoids any constraint in object or tool shape and obtains valid and optimal trajectories, with a low temporal cost of O(n∙m), which is corroborated by the experiments. It also avoids some precision errors that are present in the most popular commercial CAD/CAM libraries. Conclusions. The use of morphology as the base of the formulation avoids self-intersections and discontinuities and allows the system to machine free-form shapes using any tool without constraints. Most numerical and geometrical problems are also avoided. Obtaining a practical algorithm from the theoretical formulation is straightforward. The resulting procedure is simple and efficient.


2014 ◽  
Vol 3 (1) ◽  
pp. 87-95 ◽  
Author(s):  
S. Haag ◽  
D. Zontar ◽  
J. Schleupen ◽  
T. Müller ◽  
C. Brecher

Abstract. Today, the assembly of laser systems requires a large share of manual operations due to its complexity regarding the optimal alignment of optics. Although the feasibility of automated alignment of laser optics has been shown in research labs, the development effort for the automation of assembly does not meet economic requirements – especially for low-volume laser production. This paper presents a model-based and sensor-integrated assembly execution approach for flexible assembly cells consisting of a macro-positioner covering a large workspace and a compact micromanipulator with camera attached to the positioner. In order to make full use of available models from computer-aided design (CAD) and optical simulation, sensor systems at different levels of accuracy are used for matching perceived information with model data. This approach is named "chain of refined perception", and it allows for automated planning of complex assembly tasks along all major phases of assembly such as collision-free path planning, part feeding, and active and passive alignment. The focus of the paper is put on the in-process image-based metrology and information extraction used for identifying and calibrating local coordinate systems as well as the exploitation of that information for a part feeding process for micro-optics. Results will be presented regarding the processes of automated calibration of the robot camera as well as the local coordinate systems of part feeding area and robot base.


Author(s):  
S Ding ◽  
D C H Yang ◽  
Z Han

Boundary-conformed machining is a new method to mill free-form surfaces with tool paths that reflect the natural shapes of the surfaces. It is suitable for the machining of turbine blades taking into account the direction of tool marks left on the vanes. To facilitate this type of machining, this paper introduces an application of the ‘boundary-conformed algorithm’ to generate continuous boundary-conformed flow line tool paths for the milling of blade surfaces. With this approach, the initial segment of the flow line tool paths is along the top edges of the blade while the final segment follows the intersection curves between the blade and the hub surface. The intermediate segments cover the surface by changing smoothly from the initial tool path to the final tool path. The two opposite sides of the blade, which are two trimmed surfaces, are machined together continuously from top to bottom with these continuous boundary-conformed tool paths. This method has been successfully integrated into an industrial computer-aided design and manufacture system (Pro/Engineer) by using Pro/Toolkit. A detailed algorithm and implementation processes have been introduced.


2014 ◽  
Vol 622-623 ◽  
pp. 420-426 ◽  
Author(s):  
D. Rajenthirakumar ◽  
R. Sridhar

The idea of incrementally forming sheet metal with a single point tool, called ‘dieless forming’, was patented by Leszak [1] well before it was technically feasible. There have been many studies, which have lead to the present situation [2-9]. The new processes are attractive because manufacturing sheet metal can be accomplished by any facility having a three-axiscncmill. Sheet metalspifis an innovative, flexible sheet metal-forming technology that uses principles of layered manufacturing. It transforms the complicated geometry information into a series of parameter of two-dimensional layers and then the plastic deformation is carried out layer-by-layer through the computer numerically controlled. The basic principle ofspif(Fig. 1) is that the forming tool moves around the outline of the part along the predefined tool path and extrudes the sheet metal point by point so that the local plastic deformations occur incrementally [8, 10]. The forming tool paths have a great effect on the surface quality, forming time and dimensional accuracy. Although the movement mode of the forming tool is similar to one of the cutters in thecncmilling machine, the forming process based on the plastic deformation and milling process is totally different, so the requirements for the tool paths are different. As a result, there are some specific characteristics which should be considered in forming tool path generation. The goal of this paper is to evaluate the possibility of producing low-cost polymer sheet components by means ofspif. Three different thermoplastic materials were incrementally formed on a conventionalcncmilling machine. Experiments are conducted to determine the formability, failure modes and significant process parameters. Even though considerable amount of research work has been done in the field, these aspects are not completely defined and only limited number of materials has been tested.


Author(s):  
Zhi Yang ◽  
Richard A Wysk ◽  
Sanjay Joshi

A modern six-axis wire electrical discharge machining (WEDM) system is capable of producing more complex geometries than 2D, 2½D, or ruled surface parts. The rotational axis on a six-axis WEDM system allows a part to be rotated while using a cutting wire to fabricate it. However, limited automation for process planning six-axis WEDM systems requires significant time and effort must be put into process planning. Even with commercially-available computer-aided design (CAD) software, it is difficult to produce process plans for a six-axis WEDM system. Toward automatic development of process plans, a method of determining such setup plans, including the number of setup orientations and rotational axis movements, is presented in this paper. Tangent visibility analysis results presented in our prior research are used to guide the setup, and intermediate coordinate systems are defined in order to classify the tangent visibility results. A greedy algorithm is developed to determine the set of intermediate coordinates and setup orientations for six-axis WEDM.


Author(s):  
H S Choy ◽  
K W Chan

Tool path generation based on contour-parallel offset has many practical applications, especially in pocket milling. However, the tool path segments offset from the pocket boundary usually form many corners. In milling operation, these corners with accumulated material will have an adverse effect on milling performance. This paper proposes an improved numerically controlled (NC) tool path pattern for pocket milling. Bow-like tool path segments are appended to a conventional contour-parallel tool path at the corner positions. The cutter loops along the appended tool path so that the corner material is machined progressively in several passes. By adjusting the number of appended tool path loops, cutting resistance can be controlled. The proposed tool path generation for dealing with different corner shapes was implemented as an addon user function in a computer aided design/manufacture (CAD/CAM) system. Cutting tests confirmed that the proposed tool path pattern is useful for clearing accumulated material at pocket corners while maintaining a higher cutting stability.


2017 ◽  
Vol 42 (5) ◽  
pp. E6 ◽  
Author(s):  
William T. Couldwell ◽  
Joel D. MacDonald ◽  
Charles L. Thomas ◽  
Bradley C. Hansen ◽  
Aniruddha Lapalikar ◽  
...  

The authors have developed a simple device for computer-aided design/computer-aided manufacturing (CAD-CAM) that uses an image-guided system to define a cutting tool path that is shared with a surgical machining system for drilling bone. Information from 2D images (obtained via CT and MRI) is transmitted to a processor that produces a 3D image. The processor generates code defining an optimized cutting tool path, which is sent to a surgical machining system that can drill the desired portion of bone. This tool has applications for bone removal in both cranial and spine neurosurgical approaches. Such applications have the potential to reduce surgical time and associated complications such as infection or blood loss. The device enables rapid removal of bone within 1 mm of vital structures. The validity of such a machining tool is exemplified in the rapid (< 3 minutes machining time) and accurate removal of bone for transtemporal (for example, translabyrinthine) approaches.


Sign in / Sign up

Export Citation Format

Share Document