Nanocrystalline Diamond Particles Prepared by High-Energy Ball Milling Method

2013 ◽  
Vol 284-287 ◽  
pp. 168-172 ◽  
Author(s):  
Chii Ruey Lin ◽  
Da Hua Wei ◽  
Minh Khoa Ben Dao ◽  
Ren Jei Chung ◽  
Ming Hong Chang

In this present work, nanodiamond (ND) particles were successfully prepared from commercial micron diamond powder at room temperature by high energy ball milling process using an oscillatory mill (SPEX8000). The size reduction and structural evolutions of the milled samples were investigated as a function of the milling time by means of X-ray diffraction, and field emission scanning electron microscopy. The line broadening technique was used to determine the crystallite size and lattice strain. After 40 h of milling, obtained ND particles possessed uniform shape and 25 nm of average particle size. Also, energy dispersive X-ray results revealed the high purity of ND and demonstrated that the purification process using harsh acid mixture were effective to remove metal and non-diamond carbon impurities produced in milling stage. All results propose a scalable method to preparation ND particles as well as nanocrystalline materials.

2014 ◽  
Vol 802 ◽  
pp. 51-55 ◽  
Author(s):  
Claudinei dos Santos ◽  
Alexandre Fernandes Habibe ◽  
Durval Rodrigues ◽  
José C. Minatti ◽  
Jefferson Fabrício C. Lins ◽  
...  

In this work, the microstructural features of the particles based on 66% Co-28% Cr-6% Mo alloy, were investigated by X-ray diffraction and Scanning electron microscopy (SEM). Powders obtained by high-energy ball milling in an inert atmosphere, and held in SPEX mill with times between 15min and 120min, about ball/powder ratio of 6:1, were characterized by X-ray diffraction indicating in all conditions, Co phase as the crystalline phase of the system. The powders have a morphology that indicate a continuous reduction in average particle size as a function of increasing time, however, the shape of the particles initially flat for times up to 30 minutes, becomes spherodized after 30 minutes of grinding.


2013 ◽  
Vol 06 (04) ◽  
pp. 1350038 ◽  
Author(s):  
LIXIN ZHAO ◽  
LIYUN ZHENG ◽  
GEORGE C. HADJIPANAYIS

Sm 2 Fe 17 melt-spun powders were subjected to the nitriding process and followed by surfactant-assisted high-energy ball milling (HEBM). The microstructures, morphology and magnetic properties were also investigated by X-ray diffractometer, scanning electron microscope and vibrating sample magnetometer. The results showed that the coercivities of the nitrided Sm 2 Fe 17 powders were 1.64 kOe and 3.65 kOe when the nitriding temperatures were 350°C and 450°C, respectively. When the nitriding temperature was 350°C, there was a wasp-shaped hysteresis loop, due to the soft phase of iron, formed during the nitrogenation process. The subsequent surfactant-assisted HEBM can further improve the magnetic properties of the nitrided Sm 2 Fe 17 powders and a 3 h milling process increased the coercivity of the sample nitrided at 450°C reached a high value of 6.97 kOe.


2020 ◽  
Vol 9 (4) ◽  
pp. e175943067
Author(s):  
João Augusto Martins Almeida ◽  
Bruna Horta Bastos Kuffner ◽  
Gilbert Silva ◽  
Patrícia Capellato ◽  
Daniela Sachs

There are a class of material widely used in bone tissue repair. This material is calcium phosphate ceramics (CPCs)that can be used on two phases: α and β. However, β-TCP is more used in bone regeneration than α–TCP due to the biocompatible and bioactive properties.In the present work evaluate the influence of these two distinct processes to deagglomeration and the consequence in the particle size of the β-TCP obtained through solid-state reaction. Among all of the routes used in research and industry to reduce the particles size of different materials, the high energy ball milling is one of the most effective, due to the high rotation speed that this process achieves. The deagglomeration through agate mortar is considered a cheaper process when compared with the high energy ball milling. The characterization of both powders, deagglomerated in high energy ball milling and agate mortar, was realized through scanning electron microscopy, to analyze the powder morphology, and laser granulometry, to determine the size of the particles. Also, the forerunner powder was previously submitted to x-ray diffraction to confirm the formation of the β-TCP phase. The analysis through x-ray diffraction confirmed that the phase formed during the calcination process corresponded to the β-TCP. The results obtained after the deagglomeration processes indicated that the morphology was predominantly irregular for both powders. In relation to the granulometry, the deagglomeration performed through agate mortar showed to produce particles with smaller size (11,4µm e 0,9µm) and heterogeneous distribution, while the high energy ball milling process produced particles with larger size (11,4µm a 1,8µm) and higher homogeneity.


2012 ◽  
Vol 512-515 ◽  
pp. 723-728
Author(s):  
Qi Long Guo ◽  
Jun Guo Li ◽  
Qiang Shen ◽  
Lian Meng Zhang

The sinterability of ZrB2-20vol.% SiC ceramics by high-energy ball milling as well as introduction of Zr and Al as sintering additives. Densification process and microstructure of ZrB2-SiC ceramics were investigated. After high-energy ball milling, the average particle size decreased to about 500 nm-2 μm, and ZrB2-SiC powder can be sintered to 98.92% theoretical density at 1800 °C, but a trace of amount of oxidation (ZrO2) were detected in sintered sample. Introduction of Zr, Al and C combined with high-energy ball milling enhanced the densification of ZrB2-SiC ceramics and reduced the particle sizes, and the relative density of obtained ceramic reached up to 99.49% at 1800 °C. The additions of Zr, Al and C can remove the oxide impurities of the surface of ZrB2 particles and form a reaction between oxide impurities. The fracture toughness increased of the 40% when ZrB2 powders were milled by high-energy ball milling, and increased to 4.77±0.18 MPa•m1/2. However, the attrition-milled composites had lower hardness and Young’s modulus, which was attributed to the presence of a second phase in the grain boundaries.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 728
Author(s):  
Roberto Gómez Batres ◽  
Zelma S. Guzmán Escobedo ◽  
Karime Carrera Gutiérrez ◽  
Irene Leal Berumen ◽  
Abel Hurtado Macias ◽  
...  

Air plasma spray technique (APS) is widely used in the biomedical industry for the development of HA-based biocoatings. The present study focuses on the influence of powder homogenization treatment by high-energy ball milling (HEBM) in developing a novel hydroxyapatite-barium titanate (HA/BT) composite coating deposited by APS; in order to compare the impact of the milling process, powders were homogenized by mechanical stirring homogenization (MSH) too. For the two-homogenization process, three weight percent ratios were studied; 10%, 30%, and 50% w/w of BT in the HA matrix. The phase and crystallite size were analyzed by X-ray diffraction patterns (XRD); the BT-phase distribution in the coating was analyzed by backscattered electron image (BSE) with a scanning electron microscope (SEM); the energy-dispersive X-ray spectroscopy (EDS) analysis was used to determinate the Ca/P molar ratio of the coatings, the degree of adhesion (bonding strength) of coatings was determinate by pull-out test according to ASTM C633, and finally the nanomechanical properties was determinate by nanoindentation. In the results, the HEBM powder processing shows better efficiency in phase distribution, being the 30% (w/w) of BT in HA matrix that promotes the best bonding strength performance and failure type conduct (cohesive-type), on the other hand HEBM powder treatment promotes a slightly greater crystal phase stability and crystal shrank conduct against MSH; the HEBM promotes a better behavior in the nanomechanical properties of (i) adhesive strength, (ii) cohesive/adhesive failure-type, (iii) stiffness, (iv) elastic modulus, and (v) hardness properties.


2016 ◽  
Vol 869 ◽  
pp. 277-282
Author(s):  
Moisés Luiz Parucker ◽  
César Edil da Costa ◽  
Viviane Lilian Soethe

Solid lubricants have had good acceptance when used in problem areas where the conventional lubricants cannot be applied: under extreme temperatures, high charges and in chemically reactive environments. In case of materials manufactured by powder metallurgy, particles of solid lubricants powders can be easily incorporated to the matrix volume at the mixing stage. In operation, this kind of material provides a thin layer of lubricant that prevents direct contact between the surfaces. The present study aimed at incorporating particles of second phase lubricant (h-BN) into a matrix of nickel by high-energy ball milling in order to obtain a self-lubricating composite with homogeneous phase distribution of lubricant in the matrix. Mixtures with 10 vol.% of h-BN varying the milling time of 5, 10, 15 and 20 hours and their relationship ball/powder of 20:1 were performed. The effect of milling time on the morphology and microstructure of the powders was studied by X-ray diffraction, SEM and EDS. The composite powders showed reduction in average particle size with increasing milling time and the milling higher than 5 hours resulted in equiaxial particles and the formation of nickel boride.


2011 ◽  
Vol 311-313 ◽  
pp. 1281-1285 ◽  
Author(s):  
Pei Hao Lin ◽  
Lei Wang ◽  
Shun Kang Pan ◽  
Hua Mei Wan

The NdFe magnetic absorbing materials were prepared by rapid solidification and high-energy ball milling method. The effect of high-energy ball milling on particle morphology, organizational structure and microwave absorbing properties of NdFe magnetic absorbing materials were analyzed with the aid of X-ray diffractometer, scanning electron microscope and vector network analysis. The results show that the Nd2Fe17 and α-Fe phase are refined, the particles become smaller and thinner; the span-ratio of the particles increases along with time during the process of high-energy ball milling; and meanwhile, the frequency of absorbing peak reduces. The absorbing bandwidth broadens as the increase of the time of ball milling, except that of 48h.The minimum reflectance of the powder decreases from -22dB to - 44dB under the circumstances that the time of high energy ball milling reaches 48h and the thickness of the microwave absorbing coating is 1.5mm. But it rebounds to about - 6dB when the time of ball milling reaches 72h.


Sign in / Sign up

Export Citation Format

Share Document