Mechanical Behaviours of Open-Cell and Closed-Cell Aluminium Foams against Spherical-Nosed Projectile Penetration

2010 ◽  
Vol 29-32 ◽  
pp. 321-325
Author(s):  
Xiao Peng Yan ◽  
Nian Mei Zhang ◽  
Wei Min Liang ◽  
Yong Gang Zhao ◽  
Gui Tong Yang

In this paper, the mechanical behaviours of open-cell and closed-cell aluminium foams against spherical-nosed projectile penetration are studied theoretically. An analytical model based on dynamic cavity expansion theory and previous experiment data is presented. The analytical equations are derived for the penetration resistance and the final penetration depth during the whole penetrating process. The effects of the mass density of target material, the geometry and initial velocity of the projectiles on the final penetration depth are investigated in detail. It is shown that the final penetration depth mostly lie on the density of aluminium foams and the kinetic energy of projectile. When the density of target is smaller, the final penetration depth of projectile in the closed-cell aluminium foams target is obviously smaller than that in the open-cell aluminium foams target. Meanwhile, with the increase of density of target and the decrease of initial impact velocity, the difference of the capacity of absorbing energy between open-cell and closed-cell aluminium foams targets becomes gradually narrow.

2010 ◽  
Vol 139-141 ◽  
pp. 72-75
Author(s):  
Feng Huan Sha

The present study focuses on the penetrating resistance of the laminated composite with stepwise graded foam target struck normally by conical-nosed projectiles. The dynamic cavity expansion theory is applied to formulate analytical model. Experimental results verify that this model on account of rigid-perfectly plastic-locking model is suitable for analyzing penetration depth of the projectile into a cellular target. The difference types of foam configurations, with identical areal density, were arranged according to the density of the respective foam. The penetrating process can be divided into 7 stages. Penetrating depth; the effect of mass density and the change of graded/layered core structures of the difference configurations are analyzed. It is found that composite target have a higher penetrating resistance than the monolithic foam material target of equal mass. The analytical results show great potential to reasonable structures for absorbing the dynamics energy and improving the overall penetrating resistance.


2011 ◽  
Vol 52-54 ◽  
pp. 436-441 ◽  
Author(s):  
Yong Gang Bao ◽  
Nian Mei Zhang ◽  
Gui Tong Yang

A theoretical study is presented herein on the perforation of the cone-nosed projectiles against bi-layered laminated composite aluminum alloy foam target. Bi-layered targets were arranged according to the mass density and thickness of foam material. The dynamic cavity expansion theory is applied to formulate analytical model. The perforating process can be divided into 8 stages. The analytical equations during every stage are derived to evaluate the final penetration depth and penetration resistance during the whole perforating process. Penetrating depths, velocity limits and residual velocity of projectile are analyzed. The effect of mass density of target material and the layer thicknesses on the penetration resistance and capacity of absorbing energy are investigated. The results demonstrate that configuration of laminated targets and the initial kinetic energy play important roles during the perforating processes.


2010 ◽  
Vol 97-101 ◽  
pp. 913-917
Author(s):  
Feng Huan Sha ◽  
Nian Mei Zhang ◽  
Xiao Peng Yan ◽  
Gui Tong Yang

A theoretical study is presented herein on the penetration of the laminated composite aluminum alloy foam target struck normally by conical-nosed projectiles. Two layers were arranged according to the density of the respective foam; configuration 1 consisted of 10mm/semi-infinite continuous foams and configuration 2 consisted of 20mm/ semi-infinite continuous foams. The dynamic cavity expansion theory is applied to formulate analytical model. The penetrating process can be divided into 6 stages. The resistance equations during every stage are derived. Penetrating depth of projectile are analyzed. The effect of initial velocity, mass density of foam material and the thickness of the upper layered foam on the penetration resistance are investigated. It is found that composite target have a higher penetrating resistance than the monolithic foam material target of equal mass. The analytical results show that configuration 1 outperformed configuration 2 in regards to their penetrating resistance. The thickness of the upper layered foam within 5-20mm has significant influence on penetrating depth. The energy absorption capacity of the composite target material is evaluated.


2011 ◽  
Vol 323 ◽  
pp. 103-108
Author(s):  
Guang Yan Huang ◽  
Guang Wu ◽  
Shun Shan Feng

Three-stage model of normal penetration of rigid projectile into aluminum plate is developed base on cavity expansion theory (plate thickness is smaller than projectile nose length). Correction method of the models is proposed and predicted results have good agreement with experimental data. The influence of target’s yield stress, target material parameter, sliding friction coefficient and projectile nose shape to penetration process is analyzed through numerical solution. It provides an effective mechanical analysis model for research of projectile impact resistance method to aluminum protective structure.


2010 ◽  
Vol 29-32 ◽  
pp. 1844-1849
Author(s):  
Yong Gang Bao ◽  
Nian Mei Zhang ◽  
Xiao Peng Yan ◽  
Gui Tong Yang

The perforation of composite laminated aluminum foam target against rigid projectiles is studied. The dynamic cavity expansion theory is applied to formulate analytical model and study the perforation resistance of the projectiles. The perforation process can be divided into 11 stages. The perforation resistance expression is derived and applied to analyze the penetration depth of cone-nosed projectiles into the aluminum foam target. The velocity limit and residual velocity are obtained by solving the series of motion equations. The effects of initial velocity, the half-cone angle of the projectile, the density and thickness of each layer on the penetration resistance are investigated. The energy absorption capacity of the composite target material is evaluated.


Author(s):  
Hai-Jun Wu

Abstract The penetration depth of rigid projectiles is investigated using the modified spherical cavity expansion theory and the Holmquist–Johnson–Cook (HJC) model for the concrete targets, in which the model parameters used in the Mohr–Coulomb Tresca-limit yield criterion are obtained by the triaxial compression tests. By comparing the cavity expansion pressures of the concrete samples with two different types of aggregate, the influence of the aggregate hardness on the penetration processes is discussed. With the analysis of the tractions acted on the projectile nose, the influences of the projectile and target material properties as well as the projectile structure on the transition impact velocity are also discussed. By comparing the theoretical results with the experimental data, two penetration mechanisms are demonstrated for the ogive-nose projectile penetration into concrete with the striking velocities up to 2.0 km/s.


Author(s):  
Camilo Hernandez ◽  
Mario F Buchely ◽  
Juan P Casas-Rodriguez ◽  
Alejandro Maranon

The modeling clay is an oil-based soft, flowable, and pliable material made from waxes and oils. Besides its primary use for making sculptures, the modeling clay is commonly used to evaluate bulletproof vests and simulate metal manufacturing processes by conformation. In ballistic tests, the clay is used to retain the deformation of the rear face of body armors; and in the study of metal forming processes, it is used as a physical model to provide information on the plastic flow. However, its mechanical dynamic behavior is not entirely understood. In this study, Plastilina Roma No. 1 modeling clay was mechanically characterized using the power-law constitutive model at medium strain rates [Formula: see text]. The material parameters were determined using a penetration model based on the Cavity Expansion Theory and an inverse technique involving the comparison of the model with experimentation. The optimum set of constitutive parameters was found by reducing the difference of the calculated penetration profile and the measurements from a drop test. This optimization process was programmed on the MATLAB–Simulink environment. The determined material parameters were validated by comparing the results from a computational model with three test set-ups. Finite element model results show good concordance with experimental measurements.


2011 ◽  
Vol 308-310 ◽  
pp. 1420-1425 ◽  
Author(s):  
Guang Yan Huang ◽  
Shun Shan Feng ◽  
Guang Wu ◽  
Shun Ping Li

Based on the cavity expansion theory, an analysis model of normal penetration of slender nose projectile into armor targets was established, and the variation relation curve of penetration depth and initial velocity when initial velocity is below ballistic limit was obtained. By carrying out ballistic impact test using 85mm smoothbore gun, various projectile nose shapes and armor target thickness and their effect on damage were considered. The research results have indicated that the damage of target is mainly ductile reaming and the shape of crater is almost the same as the projectile nose embedded in the target. Within a relatively low velocity range, nose shape has a greater influence on penetration depth. In contrast, within a relatively high velocity range, the target thickness has a greater influence on penetration depth. It can provide theoretical basis for the design of projectile noses and analysis of anti-penetration performance of armor targets.


2017 ◽  
Vol 9 (2) ◽  
pp. 199-225 ◽  
Author(s):  
Joakim Johnsen ◽  
Jens Kristian Holmen ◽  
Thomas L Warren ◽  
Tore Børvik

In this article, we investigate the results obtained using different constitutive models for the solution of the cylindrical cavity expansion problem under plane strain conditions. The cylindrical cavity expansion solutions are employed with the cylindrical cavity expansion approximation to obtain ballistic limit and residual velocities for ductile metals perforated by rigid projectiles. Many of the previously developed cylindrical cavity expansion approximations use simplified constitutive models. However, in the present work, we first extend the cylindrical cavity expansion theory with the Voce strain hardening rule, before we utilize three different strain hardening constitutive models in cylindrical cavity expansion calculations to predict ballistic limit and residual velocities of aluminum and steel target plates struck by rigid projectiles. The results show that when strain hardening is accurately represented by the constitutive models until necking in a uniaxial tension test, all cylindrical cavity expansion models predict ballistic limit velocities that are close to the experimental data.


Author(s):  
Hai-Jun Wu ◽  
Yinan Wang ◽  
Yu Shan ◽  
Feng-Lei Huang ◽  
Qing-Ming Li

AbstractThe penetration depth of rigid projectiles is investigated using the modified spherical cavity expansion theory and the Holmquist–Johnson–Cook (HJC) model for the concrete targets, in which the model parameters used in the Mohr–Coulomb Tresca-limit yield criterion are obtained by the triaxial compression tests. By comparing the cavity expansion pressures of the concrete samples with two different types of aggregate, the influence of the aggregate hardness on the penetration processes is discussed. With the analysis of the tractions acted on the projectile nose, the influences of the projectile and target material properties as well as the projectile structure on the transition impact velocity are also discussed. By comparing the theoretical results with the experimental data, two penetration mechanisms are demonstrated for the ogive-nose projectile penetration into concrete with the striking velocities up to 2.0 km/s.


Sign in / Sign up

Export Citation Format

Share Document