half cone
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 1)

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2314
Author(s):  
Han Tang ◽  
Changsu Xu ◽  
Xin Qi ◽  
Ziming Wang ◽  
Jinfeng Wang ◽  
...  

The fluctuation effect of corn grain often occurs during the unloading stage. To accurately explore the periodic pulsation characteristics of corn grain during the unloading stage, a discrete model of corn grain was established, and the effectiveness of the discrete element method in simulating the corn grain unloading stage was verified by a 3D laser scanner and the “spherical particle filling method”. The grain cylinder was divided into six areas, and the periodic pulsation characteristics at different heights were explored through simulation tests. The results showed that the faster the average speed of corn grain changes in unit time, the more significant the periodic pulsation characteristics were as the height of grain unloading increased. The corn grain pulsateon in the grain cylinder exhibited gradual upward transmission and gradual amplification in the process of transmission. The average velocity decreased with increasing height. The direct cause of pulsation was the variation in the average stress between grain layers. Simulation analysis of grain unloading for different half cone angles of the grain cylinder was carried out. The change in corn grain average velocity over time in the area below 20 mm of the upper free surface was extracted. The results showed that the speed of the top corn grain increased with increasing the half cone angle, and the periodic pulsation phenomenon became more obvious with increasing the half cone angle at half cone angles of 30–65°. A half cone angle of 65–70° marked the critical state of corn grain flow changing from funnel flow to overall flow in the grain cylinder. This study provides a method for studying the periodic pulsation characteristics of different crops during the grain unloading stage and provides a technical reference for the safe design of grain unloading equipment.


2021 ◽  
Author(s):  
Tobias Klaas ◽  
Stefan Emeis

Abstract. Light detection and ranging (notably Doppler lidar), has become a valuable technology to assess the wind resource at hub height of modern wind turbines. However, because of their measurement principle, common wind profile Doppler lidars suffer from errors at complex terrain sites. This study analyses the impact of the five main influencing factors at lidar measurement errors in complex terrain, i.e. orographic complexity, measurement height, surface roughness and forest, atmospheric stability and half-cone opening angle, in a non-dimensional, model-based parameter study. In a novel approach, the lidar error ε is split up into a part εc, caused by flow curvature at the measurement points of the lidar and a part εs, caused by the local speed-up effects between the measurement points. This approach, e.g., allows for a systematic and complete interpretation of the influence of the half-cone opening angle φ of the lidar. It also provides information about the uncertainty of simple lidar error estimations that are based on inflow and outflow angles at the measurement points. The model-based parameter study is limited to two-dimensional Gaussian hills with hill height H and hill half-width L. H/L and z/L, with z being the measurement height, are identified as the main scaling factors for the lidar error. Three flow models of different complexity are used to estimate the lidar errors. The outcome of the study provides manifold findings that enable an assessment of the applicability of these flow models. The study clearly shows that orographic complexity, roughness and forest characteristics, as well as atmospheric stability, have a significant influence on lidar error estimation. Based on the error separation approach it furthermore allows for an in-depth analysis of the influence of reduced half-cone opening angles. The choice and parameterization of flow models and the design of methods for lidar error estimation are found to be essential to achieve accurate results. The use of a RANS CFD model in conjunction with an appropriate forest model is highly recommended for lidar error estimations in complex terrain. If atmospheric stability variation at a measurement site plays a vital role, it should also be considered in the modelling. When planning a measurement campaign, an accurate estimation of the prospective lidar error should be carried out in advance to decrease measurement uncertainties and maximize the value.


Fuel ◽  
2020 ◽  
Vol 277 ◽  
pp. 118197
Author(s):  
András Urbán ◽  
Bálint Katona ◽  
Milan Malý ◽  
Jan Jedelský ◽  
Viktor Józsa

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1166 ◽  
Author(s):  
Shizhen Li ◽  
Wei Li ◽  
Yanjun Liu ◽  
Chen Ji ◽  
Jingzhi Zhang

A two-phase flow ejector is an important part of a water mist fire suppression system, and these devices have become a popular research topic in recent years. This paper proposes a supersonic ejector that aims to improve the efficiency of water mist fire suppression systems. The effects of ejector geometric parameters on the entrainment ratio (ER) were explored. The effects of primary flow pressure (PP) on the mixing process and flow phenomena were studied by a high-speed camera. The experimental results show that the ER first increases and then decreases with increasing PP. ER increases with increasing ejector area ratio (AR). The PP corresponding to the maximum ER of ejectors with a different nozzle exit position (NXP) is 3.6 bar. The ejector with an NXP of +1 and AR of 6 demonstrate the best performance, and the ER of this ejector reaches 36.29. The spray half-cone angle of the ejector increases with increasing ER, reaching a maximum value of 7.07°. The unstable atomization half-cone angle is mainly due to a two-phase flow pulsating phenomenon. The pulsation period is 10 ms. In the present study, a general rule that provides a reference for ejector design and selection was obtained through experiments.


2019 ◽  
Vol 52 (2) ◽  
pp. 296-303 ◽  
Author(s):  
Lilin He ◽  
Chen Li ◽  
William A. Hamilton ◽  
Tao Hong ◽  
Xin Tong ◽  
...  

Highly oriented pyrolytic graphite (HOPG) has been used as monochromators, analyzers and filters at neutron and X-ray scattering facilities for more than half a century. Interesting questions remain. In this work, the first observation of anomalous neutron `halo' scattering of HOPG is reported. The scattering projects a ring onto the detector with a half-cone angle of 12.4°, which surprisingly persists to incident neutron wavelengths far beyond the Bragg cutoff for graphite (6.71 Å). At longer wavelengths the ring is clearly a doublet with a splitting roughly proportional to wavelength. Sample tilting leads to the shift of the ring, which is wavelength dependent with longer wavelengths providing a smaller difference between the ring shift and the sample tilting. The ring broadens and weakens with decreasing HOPG quality. The lattice dynamics of graphite play a role in causing the scattering ring, as shown by the fact that the ring vanishes once the sample is cooled to 30 K. A possible interpretation by multiple scattering including elastic and inelastic processes is proposed.


2019 ◽  
Vol 5 (3) ◽  
pp. eaau7814 ◽  
Author(s):  
Xiao Li ◽  
Jun Chen ◽  
Zhifang Lin ◽  
Jack Ng

Optical tractor beams, proposed in 2011 and experimentally demonstrated soon after, offer the ability to pull particles against light propagation. It has attracted much research and public interest. Yet, its limited microscopic-scale range severely restricts its applicability. The dilemma is that a long-range Bessel beam, the most accessible beam for optical traction, has a small half-cone angle, θ0, making pulling difficult. Here, by simultaneously using several novel and compatible mechanisms, including transverse isotropy, Snell’s law, antireflection coatings (or impedance-matched metamaterials), and light interference, we overcome this dilemma and achieve long-range optical pulling at θ0≈ 1°. The range is estimated to be 14 cm when using ~1 W of laser power. Thus, macroscopic optical pulling can be realized in a medium or in a vacuum, with good tolerance of the half-cone angle and the frequency of the light.


2018 ◽  
Vol 70 (5) ◽  
pp. 872-877 ◽  
Author(s):  
Maghsood Daliri ◽  
Nader Javani

Purpose The purpose of this paper is to investigate squeezing motion between conical plates lubricated by ferro-fluid couple stress lubricants considering convective fluid inertia effects. Design/methodology/approach Based upon the Stokes couple stress theory, Ferro-hydrodynamic model of Shliomis and averaged inertia principle, squeeze film characteristics between conical plates are obtained. Findings According to the results, it is found that couple stress ferro-fluid lubricants increase squeeze film characteristics. Moreover, with increasing convective fluid inertia parameter, the squeeze film characteristics are increased. In contrast, the dimensionless load-carrying capacity diminishes when half cone angle of conical plate increases. Originality/value This paper is relatively original and it describes the squeeze film characteristics between conical plates with ferro-fluid, convective inertia, couple stresses and half cone angle of conical plate effects.


2018 ◽  
Vol 94 ◽  
pp. 122-133 ◽  
Author(s):  
A. Amoresano ◽  
C. Allouis ◽  
M. Di Santo ◽  
P. Iodice ◽  
G. Quaremba ◽  
...  

2018 ◽  
Vol 1 (1) ◽  
pp. 7-10
Author(s):  
Ayman Al-Sawalha ◽  
Takialddin Al Smadi

In connection with the development of radio communication systems, microwave, millimeter range, one of the most important is the problem of creating compact solid-state radiation sources. The antenna is the effective interaction between electronic circuits and the outside world is an important component of any wireless connection trend toward line the use of high frequencies in modern communications. Solutions, space technology, about (30 Ghz), Local Multipoint Distribution (LMDS) at 28Ghz) antenna technologies to meet the new requirements of the card actively participated in the elaboration of the various subsystems for such active monolithic Phased Array Antenna. This document is primarily.This paper mainly studies the effect of plasma wave on the radiation properties of a conically depressed microstrip patch antenna. Using linearized hydrodynamic theory and potential function technique, the total directive gain and quality factor are calculated for different values of plasma to source frequency and different half-cone angles. It is observed that the directive gain and quality factor are changes considerably by changing the half-cone angle as well as a plasma to source frequency values. © 2018 JASET, International Scholars and Researchers Association. Author Biographies Ayman Al-Sawalha Physics Department, Faculty of Science, Jerash University, Jerash , Jordan Takialddin Al Smadi  Department of Communications and Electronics Engineering, College of Engineering, Jerash University,  Jordan.


Sign in / Sign up

Export Citation Format

Share Document