Detailed Nuclear Power Plant Model for Power System Analysis Based on Matlab-Simulink

2013 ◽  
Vol 291-294 ◽  
pp. 561-570 ◽  
Author(s):  
Jin Tan ◽  
Yue Feng Huang ◽  
Zheng Xu

To research the load-following capability of the nuclear power generating unit, this paper proposed a detailed mathematical model of the pressurized water reactor (PWR) which is suitable for medium- and long-term stability analysis of power systems. Analyzed the interactions between the nuclear power generating unit and the power system, through the simulations of a single machine infinite bus (SMIB) system. The results show that PWR nuclear power generating unit can meet load following requirements to some degree.

KnE Energy ◽  
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Roziq Himawan

<p>Fatigue strength evaluations have been performed to the pressurizer component in Pressurized Water Reactor. Fatigue is the main failure mechanism of material during system in operation. Therefore, this evaluation becomes important to be performed since the pressurizer has a very important function in the reactor’s system. Analysis was performed by using Nuclear Power Plant operation data from 40 years operation and base on Miner theory. This analysis covered all stress level experienced by the reactor during the service. To determine the value of fatigue usage factor a, fatigue curve of SA 533 material was applied. Analysis results show that the cumulative fatigue damage during 40 years in operation is 4,23×10<sup>-4</sup>. This value still far enough below failure criteria, which a value is 1. Therefore, the pressurizer design has already fulfilled the design qualification in term of fatigue aspect.</p>


Author(s):  
Yong Sun ◽  
Jinpeng Ma ◽  
Jürgen Kurths ◽  
Meng Zhan

The classic equal-area criterion (EAC) is of key importance in power system analysis, and provides a powerful, pictorial and quantitative means of analysing transient stability (i.e. the system's ability to maintain stable operation when subjected to a large disturbance). Based on the traditional EAC, it is common sense in engineering that there is a critical cleaning time (CCT); namely, a power system is stable (unstable) if a fault is cleared before (after) this CCT. We regard this form of CCT as bipartite. In this paper, we revisit the EAC theory and, surprisingly, find different kinds of transient stability behaviour. Based on these analyses, we discover that the bipartite CCT is only one type among four major types, and, actually, the forms of CCT can be diversified. In particular, under some circumstances, a system may have no CCT or show a periodic CCT. Our theoretical analysis is verified by numerical simulations in a single-machine-infinite-bus system and also in multi-machine systems. Thus, our study provides a panoramic framework for diverse transient stability behaviour in power systems and also may have a significant impact on applications of multi-stability in various other systems, such as neuroscience, climatology or photonics.


Author(s):  
Hamed Shakouri G. ◽  
Hamid Lesani ◽  
Ali Mohammad Ranjbar ◽  
Hamidreza Radmanesh

The necessity of dynamic equivalents for power system analysis has been well known since the expansion of large interconnected power networks, and has been discussed during the last decades. The present paper proposes a new method for constructing dynamic equivalents of power systems. In this method, at the first step the ``study system" is modeled completely via a single machine-infinite bus modeling procedure. Then the ``external system" is identified as a MIMO feedback block of this model in such a manner that can include dynamic effects of the latter on the behavior of the former. The method is successfully experimented on a part of the Iranian southern network.


2020 ◽  
Author(s):  
Gilles Mpembele ◽  
Jonathan Kimball

<div>The analysis of power system dynamics is usually conducted using traditional models based on the standard nonlinear differential algebraic equations (DAEs). In general, solutions to these equations can be obtained using numerical methods such as the Monte Carlo simulations. The use of methods based on the Stochastic Hybrid System (SHS) framework for power systems subject to stochastic behavior is relatively new. These methods have been successfully applied to power systems subjected to</div><div>stochastic inputs. This study discusses a class of SHSs referred to as Markov Jump Linear Systems (MJLSs), in which the entire dynamic system is jumping between distinct operating points, with different local small-signal dynamics. The numerical application is based on the analysis of the IEEE 37-bus power system switching between grid-tied and standalone operating modes. The Ordinary Differential Equations (ODEs) representing the evolution of the conditional moments are derived and a matrix representation of the system is developed. Results are compared to the averaged Monte Carlo simulation. The MJLS approach was found to have a key advantage of being far less computational expensive.</div>


Author(s):  
Jun Zhao ◽  
Xing Zhou ◽  
Jin Hu ◽  
Yanling Yu

The Qinshan Nuclear Power Plant phase 1 unit (QNPP-1) has a power rating of 320 MWe generated by a pressurized water reactor that was designed and constructed by China National Nuclear Corporation (CNNC). The TELEPERM XS I&C system (TXS) is to be implemented to transform analog reactor protection system (RPS) in QNPP-1. The paper mainly describes the function, structure and characteristic of RPS in QNPP-1. It focuses on the outstanding features of digital I&C, such as strong online self-test capability, the degradation of the voting logic processing, interface improvements and CPU security. There are some typical failures during the operation of reactor protection system in QNPP-1. The way to analyze and process the failures is different from analog I&C. The paper summarizes typical failures of the digital RPS in the following types: CPU failure, communication failure, power failure, Input and output (IO) failure. It discusses the cause, risk and mainly processing points of typical failure, especially CPU and communication failures of the digital RPS. It is helpful for the maintenance of the system. The paper covers measures to improve the reliability of related components which has been put forward effective in Digital reactor protection system in QNPP-1. It will be valuable in nuclear community to improve the reliability of important components of nuclear power plants.


1994 ◽  
Author(s):  
F. Ö. Onbaşioğlu ◽  
A. G. Parlos ◽  
K. L. Peddicord ◽  
John D. Metzger ◽  
Mohamed S. El-Genk ◽  
...  

2015 ◽  
Vol 35 (1Sup) ◽  
pp. 42-49 ◽  
Author(s):  
Luis Fernando Rodríguez-García ◽  
Sandra Milena Pérez-Londoño ◽  
Juan José Mora-Flórez

<span>Current electric power systems have an increasing penetration of electric vehicles, and its effect has to be considered in different <span>studies, such as optimal dispatch or voltage stability, among others. Additionally, considering that power system analysis becomes <span>complex when the number of buses increase, this paper presents a methodology for aggregation of load areas that use a measurement-based load modeling approach based on an evolutionary computational technique and a classical reduction method. This aggregate <span>load area model is proposed to reduce areas that consider electric vehicle (EV) load models. The proposed method provides a static <span>equivalent load model and an equivalent network that can be used to reduce the computational effort required by power system<br /><span>studies. In order to validate the application of the proposed methodology, a 30-bus power system considering several disturbances <span>and levels of penetration of the electric vehicles was used. The results show that the equivalent network model allows the reproduction <span>of different events with an acceptable accuracy when it is compared to the original system behavior.</span></span></span></span></span></span></span><br /><br class="Apple-interchange-newline" /></span>


Sign in / Sign up

Export Citation Format

Share Document