Analysis on Gas Geological Law of No.56 Coal Seam in Shengli Mine

2013 ◽  
Vol 295-298 ◽  
pp. 2859-2863
Author(s):  
Yong Li Liu ◽  
Yuan Ping Ma ◽  
Tao Qin ◽  
Chang Ji Dong

Based on the analysis of geologic structure evolution and distribution characteristic in the Shengli Mine, which studied the influence that the mine geological structure, roof and floor lithologic of coal seam and elevation of seam floor, made on mine gas occurrence, combined with geological data and a large number of experimental data. Detailed elaboration about the situation in the Shengli Mine gas geology law, and prediction about gas emission and the dangerous of gas regional outburst. The results show that the gas content of the seam would be increases with the depth of the seam increases; There would be an abnormal phenomenon occurred at the geological fault about the gas occurrence, which is especially obvious in fault fracture zone.

2018 ◽  
Vol 36 (5) ◽  
pp. 1310-1334 ◽  
Author(s):  
Qingsong Li ◽  
Xin He ◽  
Jiahao Wu ◽  
Shu Ma

In order to enhance the management level of coal mine safety production and promote the “safe, accurate and efficient” preventive treatments for gas in Guizhou of China, the occurrence and other prominent features of coal and gas are investigated. The characteristics and regularities of coal mine accidents in Guizhou during 2001–2015 are summarized to analyze the commonness of gas accidents in general and determine the characteristics of gas preventive treatment. Geological data, gas basic parameters, and physical properties of coal of 386 mines and 761 sets of coal seams in Guizhou are also statistically analyzed. Based on step control theory of gas occurrence structure and the regionally tectonic regularity of coal-bearing stratum distribution, the deformations of coal measures in Guizhou mine area are mainly caused by great variation of stratigraphic occurrence, complicated geological structure, and high crustal stress. The regional occurrence of coal seam is obvious with the highest content of Tongzi–Zunyi–Liuzhi–Xingyi line, which gradually reduces to the both east and west sides. Influence factors and weights of gas occurrence are expounded from geological and coal factor by mathematical statistics, and the main influence factors of gas occurrence are the sedimentary environment, syncline structure, and metamorphic grade in proper sequence. Combined with the risk prediction of coal and gas outburst area, the prediction of gas pressure by gas content is not suitable under the special occurrence conditions. The initial velocity of gas emission, the solidity coefficient, and the damage type in more than 77% of minable seams all exceed the critical value. This work provides guidance in improvement of the governance situation for gas control in Guizhou. The index prediction system which is suitable for mining conditions of special coal mines in Guizhou should be established.


2011 ◽  
Vol 361-363 ◽  
pp. 208-211
Author(s):  
Cui Jia ◽  
Yu Lin Wang ◽  
Xu Yang ◽  
Mi Shan Zhong ◽  
Nan Yan

This paper takes gas as a geological-mass to study, using gas geology theory, by analysising the geological conditions of Yongju mine in ShanXi, combining with the coal seam gas content data which measured underground to study the relationship between geological conditions and gas occurrence, reveal the gas occurrence factors: geological structure, roof and floor lithologic of coal seam, buried depth of coal seam and thickness of coal seam. Finally, using the measured data of gas content and gush, regression analysis, the gas gush is forecasted, playing a guiding role in the gas control and production safety .


2021 ◽  
Vol 284 ◽  
pp. 01016
Author(s):  
Yinghua Lv ◽  
Shi Gang An ◽  
Wen Xu Liang ◽  
Dian Fu Chen ◽  
Wei Fu

Mining is gradually progressed toward the in-depth area of No.8 solid coal seam in No.3 panel of Baode Coal Mine. In order to secure safe mining in this area, a systematic analysis is conducted on the geological factors that influence gas occurrence. Based on the basic data actually measured at site, grey relational analysis (GRA) is adopted for predictive analysis of influencing factors (depth, coal seam thickness, metamorphic grade, sand to mud ratio of roof, sand to mud ratio of floor, geological structure and washout), followed by establishment of a grey relational model. Then, the relation degree among factors is calculated, thus identifying the main controlling factors of gas occurrence. The research result suggests: the main geological factors that influence gas occurrence in No.8 coal seam are geological structure and washout. A model equation is established for prediction of gas content using multiple regression method: y=3.2429+0.0047X1+0.0079X2-0.0180X3+0.0016X4-0.0215X5+0.4641X6+0.2001X7. This equation demonstrates high degree of fitting.


2013 ◽  
Vol 734-737 ◽  
pp. 484-487 ◽  
Author(s):  
Mei Hua Geng ◽  
Xiu Jiang Lv ◽  
Xiao Gang Zhang

The geological structure is an important factor of gas occurrence in coal seam, and the gas occurrence in deep coal seam should be paid attention to enough because the occurrence was more controlled by geological structure and influence. Taken Fengfeng coalfield as target in this paper, the geological structure of this coalfield was described. The deep coal mining district which is monoclinic structure in Fengfeng is located in the east of Gushan anticlinoria, which the junior small anticlines and synclines of the sub-echelon are well developed. And regional fault structures are intensive, the pressure structure is the major structure among this region. The characteristics of geological structure in Fengfeng coalfield were analyzed. The tensional structure planes and pressure structure are the major effect factors, and the latter is the main form of gas occurrence in deep. Some suggestions on safe of deep mining in high gas environment is also put forward, in order to provide theoretical support for the deep coal mining and gas disaster prevention.


2021 ◽  
Author(s):  
Shokofe Rahimi ◽  
Majid Ataee-pour ◽  
Hasan Madani

Abstract It is very difficult to predict the emission of coal gas before the extraction, because it depends on various geological, geographical and operational factors. Gas content is a very important parameter for assessing gas emission in the coal seam during and after the extraction. Large amounts of gas released during the mining cause concern about adequate airflow for the ventilation and worker safety. Hence, the performance of the ventilation system is very important in an underground mine. In this paper, the gas content uncertainty in a coal seam is first investigated using the central data of 64 exploratory boreholes. After identifying the important coal seams in terms of gas emission, the variogram modeling for gas content was performed to define the distribution. Consecutive simulations were run for the random evaluation of gas content. Then, a method was proposed to predict gas emission based on the Monte Carlo random simulation method. In order to improve the reliability and precision of gas emission prediction, various factors affecting the gas emission were investigated and the main factors determining the gas emission were identified based on a sensitivity analysis on the mine data. This method produced relative and average errors of 2% and 0.57%, respectively. The results showed that the proposed model is accurate enough to determine the amount of emitted gas and ventilation. In addition, the predicted value was basically consistent with the actual value and the gas emission prediction method based on the uncertainty theory is reliable.


2021 ◽  
Vol 257 ◽  
pp. 03026
Author(s):  
Zhonghua Wang

In order to study the temporal and spatial variation of gas flow in different rock pillar extraction boreholes, gas pressure, gas content, gas emission from 100-meter coal holes and coal seam permeability coefficient were measured on site. The site inspected the gas flow in the boreholes at 15m, 7.5m, directly above, 7.5m, and 15m at the lower slab of different rock pillar floor roadways. It analyzed the change law of gas flow in boreholes of 710 floor lanes and 505 floor lanes, which provided a basis for the layout of gas drainage boreholes.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zhenni Ye ◽  
Enke Hou ◽  
Huantong Li ◽  
Zhonghui Duan ◽  
Fan Wu

The theory of coalbed methane distribution controlled by tectonism is a hot issue in the field of geofluid-geotectonic interaction research. Taking the geological structure in the scale range of the 1302 working face of a Guojiahe wellfield in a Yonglong mining area as the background, this paper focuses on the basic research problem of the influence of geological structure on the control of coal reservoir gas content and uses a THM coupling model to analyze the change of coalbed gas content and distribution characteristics of different tectonic positions. The change of CBM content and permeability in the anticline, syncline, and faults is analyzed. Accordingly, the variation distance of gas content and reservoir permeability controlled by tectonism of different geological structures is quantified to provide guidance for the selection of CBM-favorable areas. The research results show that the gentle dip syncline hinge zone is a potential gas-rich area with heat preservation and low permeability, while the gentle dip anticline hinge zone is a gas-poor area with low temperature and low pressure and high permeability. The thick coal seam zone of the syncline hinge zone is the potential gas accumulation zone, and the high-permeability area is near the fault plane of a normal fault. The coal matrix near the normal fault is subjected to tensile tectonic stresses to form tensional fissures, and the coal seam in the fault plane area is susceptible to coalbed gas dispersion and increases the permeability of the coal reservoir. The variation distance of gas content and reservoir permeability controlled by the normal fault within the Guojiahe wellfield is 37 m and 54 m from the fault plane, respectively.


1997 ◽  
Vol 37 (1) ◽  
pp. 415 ◽  
Author(s):  
M.M. Faiz ◽  
A.C. Hutton

The coal seam gas content of the Late Permian Illawarra Coal Measures ranges from Methane that occurs within the basin was mainly derived as a by-product of coalification. Most of the CO2 was derived from intermittent magmatic activity between the Triassic and the Tertiary. This gas has subsequently migrated, mainly in solution, towards structural highs and accumulated in anticlines and near sealed faults.The total desorbable gas content of the coal seams is mainly related to depth, gas composition and geological structure. At depths


Author(s):  
Jufeng Zhang ◽  
Xuguang Li ◽  
Fengfeng Yang ◽  
Tai Xu ◽  
Chao Zheng ◽  
...  

2012 ◽  
Vol 524-527 ◽  
pp. 325-329 ◽  
Author(s):  
Shou Tao Hu ◽  
Bai Sheng Nie ◽  
Ming Ju Liu ◽  
Yan Wei Liu ◽  
Xiang Chun Li ◽  
...  

According to the questions of long eliminating coal and gas outburst period, large projects and slow driving came from the regional measurement of drilling hole ,the paper select 2371 (1) rail transport roadway as experiment for using along seam long drilling as a regional measurement to eliminate coal and gas outburst. Since the regional measurement of along seam long drilling had been carried out, the remaining gas content decreased more than 60%, max Smax was 5.4kg/m, max qmax was 2.01/min.Both Smax and qmax were not beyond the standard. Gas concentrations were not overrun. Gas emission decreased in the roadway afterward. The regional measurement eliminated the risk of coal and gas outburst in effect. Heading face promoted 423m forward safely. The max January footage could reach 120m.Achieve driving of heading face safely and fast.


Sign in / Sign up

Export Citation Format

Share Document