solid coal
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 11)

H-INDEX

6
(FIVE YEARS 1)

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hongjun Guo ◽  
Ming Ji ◽  
Dapeng Liu ◽  
Mengxi Liu ◽  
Gaofeng Li ◽  
...  

In order to further explore the deformation and failure essence of the deep coal body, based on the characteristics of surrounding rock stress adjustment before and after solid coal roadway excavation, an experiment of unloading confining pressure and loading axial pressure of the coal body was designed and conducted in this study. Based on test results, the failure mechanics and energy characteristics of the coal body were analyzed through experiments. Rapid unloading is considered a key factor contributing to lateral deformation and expansion failure, which exacerbates the deterioration of coal body and reduces the deformation energy storage capacity of coal. On the other hand, the larger loading rate tends to shorten the accumulation time of microcracks and cause damage to the coal body, resulting in strengthening the coal body and improving energy storage. Under the circumstance that the coal body is destroyed, the conversion rates of the internal deformation energy and dissipated energy are more significantly affected by unloading rate. The increasing unloading rate and rapid decreases in the conversion rate of deformation energy make the coal body more vulnerable to damage. Under the same stress conditions, the excavation unloading is more likely to deform, destroy, or even throw the coal than the experiment unloading. In order to reduce or avoid the occurrence of deep roadway excavation accidents, the understanding of the excavation unloading including possible influencing factors and the monitoring of the surrounding rock stress and energy during the excavation disturbance should be strengthened. It can be used as the basis for studying the mechanism of deformation and failure of coal and rock and dynamic disasters in deep mines, as well as the prediction, early warning, prevention, and control of related dynamic disasters.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhiguo Lu ◽  
Wenjun Ju ◽  
Xiwen Yin ◽  
Zhuoyue Sun ◽  
Fengda Zhang ◽  
...  

Mining above confined aquifer has become an important task for water inrush prevention in China. To study the failure characteristics of stope floor along the strike, a mechanical model under combined action of mining and confined aquifer was constructed, and the distribution of vertical stress, horizontal stress, and shear stress was obtained. Based on the Mohr–Coulomb criterion, the failure range of the floor is determined and verified by the in situ test. The results indicate the following. (1) Both vertical stress and horizontal stress in the stope floor take the junction of stress increasing area and stress decreasing area as the dividing line, forming two groups of “convex arches” at the solid coal side and the goaf side, respectively. (2) The vertical stress gradient in the solid coal side is significantly higher than that in the goaf side, while the horizontal stress gradient in the solid coal side is similar to that in the goaf side. The shear stress distribution is divided into three regions by the boundary between positive and negative shear stress, which makes the stope floor in this area to show compression shear or tension shear failure. (3) According to the in situ test, the maximum floor failure depth of 41503 working face is 11.38 m, which is quite close to the theoretical calculation result of 9.68 m. (4) Applying the mechanical model to five other coal mines with different mining conditions and stress states, the maximum absolute error between the measured and theoretical values of floor failure depth is 1.1 m, the average absolute error is 0.8 m, the maximum relative error is 8.2%, and the average relative error is 6.5%. The study provides a certain mechanical basis and reference for the floor failure mechanism induced by mining and confined aquifer.


2021 ◽  
Vol 759 ◽  
pp. 143463
Author(s):  
Yafeng Wang ◽  
Yuegang Tang ◽  
Ruiqing Li ◽  
Xin Guo ◽  
John P. Hurley ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 475
Author(s):  
Zhibiao Guo ◽  
Weitao Li ◽  
Songyang Yin ◽  
Dongshan Yang ◽  
Zhibo Ma

Fracturing roofs to maintain entry (FRME) is a novel longwall mining method, which has been widely used in China, leading a new mining revolution. In order to research the change law of side abutment pressure and movement law of overlying strata when using the FRME, a new abutment pressure monitoring device, namely, the flexible detection unit (FDU), is developed and is applied in the field. The monitoring results show that compared with the head entry (also called the non-splitting entry), the peak value of the lateral abutment pressure in the tail entry (also termed the splitting entry) is reduced by 17.2% on average, and the fluctuation degree becomes smaller. Then, finite difference software FLAC3D is used to simulate the stress change of the solid coal on both sides of the panel. The simulation results show that the side abutment pressure of the tail entry decreases obviously, which is consistent with the measured results. Comprehensive analysis points out that after splitting and cutting the roof, the fissures can change the motion state of the overlying strata, causing the weight of the overburden borne by the solid coal to reduce; therefore, the side abutment pressure is mitigated.


2021 ◽  
Vol 284 ◽  
pp. 01016
Author(s):  
Yinghua Lv ◽  
Shi Gang An ◽  
Wen Xu Liang ◽  
Dian Fu Chen ◽  
Wei Fu

Mining is gradually progressed toward the in-depth area of No.8 solid coal seam in No.3 panel of Baode Coal Mine. In order to secure safe mining in this area, a systematic analysis is conducted on the geological factors that influence gas occurrence. Based on the basic data actually measured at site, grey relational analysis (GRA) is adopted for predictive analysis of influencing factors (depth, coal seam thickness, metamorphic grade, sand to mud ratio of roof, sand to mud ratio of floor, geological structure and washout), followed by establishment of a grey relational model. Then, the relation degree among factors is calculated, thus identifying the main controlling factors of gas occurrence. The research result suggests: the main geological factors that influence gas occurrence in No.8 coal seam are geological structure and washout. A model equation is established for prediction of gas content using multiple regression method: y=3.2429+0.0047X1+0.0079X2-0.0180X3+0.0016X4-0.0215X5+0.4641X6+0.2001X7. This equation demonstrates high degree of fitting.


Author(s):  
Khaled Mohamed ◽  
Mark Van Dyke ◽  
Gamal Rashed ◽  
Morgan M. Sears ◽  
Robert Kimutis
Keyword(s):  

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Zhiqiang Wang ◽  
Peng Wang ◽  
Lei Shi ◽  
Wenyu Lv ◽  
Chao Wu ◽  
...  

Gob-side entry is an area where it is difficult to prevent and control the frequent occurrence of rock burst. Based on “Longwall Mining with Split-level Gateways” (LMSG), this paper puts forward the technology of preventing rock burst by a new gob-side entry (NCPG). The abutment pressure distribution of LMSG shows that the stress peak of solid coal is lower than the conventional panel, and the width of the limit equilibrium zone is also reduced by a small percentage. After the narrow coal pillar gob-side entry has been excavated, the peak stress in solid coal increases, and the width of the limit equilibrium zone decreases, so the practical stress concentration increases. However, the NCPG located in areas of lower stress. The peak stress in solid coal of the NCPG does not increase, but the width of the limit equilibrium zone increases, so the practical stress concentration decreases. NCPC makes the concentrated stress transfer into the deep coal body and plays the role of pressure avoidance. Compared with the narrow coal pillar gob-side entry, the NCPG reduces the energy stored in coal and rock masses and increases the energy consumption. It has significantly improved the regionality, initiative, safety, and timeliness of rock burst prevention in deep high-stress coal seam mining.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Xingping Lai ◽  
Huicong Xu ◽  
Jingdao Fan ◽  
Zeyang Wang ◽  
Zhenguo Yan ◽  
...  

In order to explore the mechanism of coal pillar rock burst in the overlying coal body area, taking W1123 working face of Kuangou Coal Mine as the engineering background, the full mining stage of W1123 is simulated by FLAC3D. It is found that the high stress concentration area has appeared on both sides of the coal pillar when W1123 does not start mining. With the advance of the working face, the high stress concentration area forms X-shaped overlap. There is an obvious difference in the stress state between the coal pillar under the solid coal and the coal pillar under the gob in W1123. The concrete manifestation is that the vertical stress of the coal pillar below the solid coal is greater than the vertical stress of the coal pillar below the gob. The position of the obvious increase of the stress of the coal pillar in the lower part of the solid coal is ahead of the advancing position of the working face, and the position of the obvious increase of the stress of the lower coal pillar in the gob lags behind the advancing position of the working face. At the same time, in order to accurately reflect the true stress environment of coal pillars, the author conducted a physical similarity simulation experiment in the laboratory to study the local mining process of the W1123 working face, and it is found that under the condition of extremely thick and hard roof, the roof will be formed in the gob, the mechanical model of roof hinged structurer is constructed and analyzed, and the results show that the horizontal thrust of roof structure increases with the increase of rotation angle. With the development of mining activities, the self-stable state of the high stress balance in the coal pillar is easily broken by the impact energy formed by the sudden collapse of the key strata. Therefore, the rock burst of coal pillar in the overlying coal body area is the result of both static load and dynamic load. In view of the actual situation of the Kuangou Coal Mine, the treatment measures of rock burst are put forward from the point of view of the coal body and rock mass.


2019 ◽  
Vol 11 (22) ◽  
pp. 6349
Author(s):  
Jun Yang ◽  
Hongyu Wang ◽  
Yajun Wang ◽  
Binhui Liu ◽  
Shilin Hou ◽  
...  

Non-coal pillar mining with roadway formed automatically (RFANM) is a new mining approach, which demonstrates revolutionary significance because it does not require making roadway before mining and coal pillar retaining. In order to explore the stability of the surrounding rock structure in RFANM, the deformation of the surrounding rock was theoretically analyzed and simulated based on three different fracture positions of the main roof. It was concluded that reasonable control of temporary support strength in roadway is of great importance to control the deformation of the entry. The deformation process of surrounding rock under different fracture positions in RFANM was simulated by using the Universal Discrete Element Code (UDEC). The results of the numerical simulation showed that the main roof was fractured at the solid coal side or gob side; the deformation of the roadway was small. The fracture condition of the main roof at the gob side required a higher effect of roof slitting or temporary support from the roadway. Through drilling and peeping at the retained roadway, it was judged that the main roof was broken inside the coal wall. Field monitoring results revealed that the deformation of the roadway can be effectively controlled.


Sign in / Sign up

Export Citation Format

Share Document