scholarly journals Investigation on coal seam distribution and gas occurrence law in Guizhou, China

2018 ◽  
Vol 36 (5) ◽  
pp. 1310-1334 ◽  
Author(s):  
Qingsong Li ◽  
Xin He ◽  
Jiahao Wu ◽  
Shu Ma

In order to enhance the management level of coal mine safety production and promote the “safe, accurate and efficient” preventive treatments for gas in Guizhou of China, the occurrence and other prominent features of coal and gas are investigated. The characteristics and regularities of coal mine accidents in Guizhou during 2001–2015 are summarized to analyze the commonness of gas accidents in general and determine the characteristics of gas preventive treatment. Geological data, gas basic parameters, and physical properties of coal of 386 mines and 761 sets of coal seams in Guizhou are also statistically analyzed. Based on step control theory of gas occurrence structure and the regionally tectonic regularity of coal-bearing stratum distribution, the deformations of coal measures in Guizhou mine area are mainly caused by great variation of stratigraphic occurrence, complicated geological structure, and high crustal stress. The regional occurrence of coal seam is obvious with the highest content of Tongzi–Zunyi–Liuzhi–Xingyi line, which gradually reduces to the both east and west sides. Influence factors and weights of gas occurrence are expounded from geological and coal factor by mathematical statistics, and the main influence factors of gas occurrence are the sedimentary environment, syncline structure, and metamorphic grade in proper sequence. Combined with the risk prediction of coal and gas outburst area, the prediction of gas pressure by gas content is not suitable under the special occurrence conditions. The initial velocity of gas emission, the solidity coefficient, and the damage type in more than 77% of minable seams all exceed the critical value. This work provides guidance in improvement of the governance situation for gas control in Guizhou. The index prediction system which is suitable for mining conditions of special coal mines in Guizhou should be established.

2021 ◽  
Vol 284 ◽  
pp. 01016
Author(s):  
Yinghua Lv ◽  
Shi Gang An ◽  
Wen Xu Liang ◽  
Dian Fu Chen ◽  
Wei Fu

Mining is gradually progressed toward the in-depth area of No.8 solid coal seam in No.3 panel of Baode Coal Mine. In order to secure safe mining in this area, a systematic analysis is conducted on the geological factors that influence gas occurrence. Based on the basic data actually measured at site, grey relational analysis (GRA) is adopted for predictive analysis of influencing factors (depth, coal seam thickness, metamorphic grade, sand to mud ratio of roof, sand to mud ratio of floor, geological structure and washout), followed by establishment of a grey relational model. Then, the relation degree among factors is calculated, thus identifying the main controlling factors of gas occurrence. The research result suggests: the main geological factors that influence gas occurrence in No.8 coal seam are geological structure and washout. A model equation is established for prediction of gas content using multiple regression method: y=3.2429+0.0047X1+0.0079X2-0.0180X3+0.0016X4-0.0215X5+0.4641X6+0.2001X7. This equation demonstrates high degree of fitting.


2012 ◽  
Vol 550-553 ◽  
pp. 502-505
Author(s):  
Yong Jiang Zhang ◽  
Xian Zheng Meng ◽  
Zun Yu Xu

In Xinji Coal Mine under complicated geological conditions, regional faults. Experimental zone for near coal seam group mining(6-1,7-1,7-2,8 seam), The objective conditions with protective layer . The minefield of soft broken coal seam, Soft layered coal firmness coefficient f = 0.18. In the test area of 210601,210603 6-1seam protective layer mining face during the period, there were 8 abnormal gas dynamic phenomenon, To the coal mine safety production brought hidden trouble. On the basis of dynamic phenomenon occurring phenomenon, analysis of the dynamic phenomena, combined with the test area actual situation, summed up the6-1coal power causes, for guiding the 6-1safety mining and provide a theoretical basis, has important significance.


2015 ◽  
Vol 744-746 ◽  
pp. 686-689
Author(s):  
Xi Cheng Xue ◽  
Zhi Qi Wang

Due to the impact of multi-period structure in Zhujiahe coal,Mine structure complicated and Has caused a certain impact on coal mine safety production. article Randomly selected 30 from 170 borehole date in coal mine.This paper analyzes 1, 2, 3 times of trend surface on No. 5-2 coal seam floor elevation.exploring the trend surface analysis method research in mine geological structure regular.


2011 ◽  
Vol 361-363 ◽  
pp. 208-211
Author(s):  
Cui Jia ◽  
Yu Lin Wang ◽  
Xu Yang ◽  
Mi Shan Zhong ◽  
Nan Yan

This paper takes gas as a geological-mass to study, using gas geology theory, by analysising the geological conditions of Yongju mine in ShanXi, combining with the coal seam gas content data which measured underground to study the relationship between geological conditions and gas occurrence, reveal the gas occurrence factors: geological structure, roof and floor lithologic of coal seam, buried depth of coal seam and thickness of coal seam. Finally, using the measured data of gas content and gush, regression analysis, the gas gush is forecasted, playing a guiding role in the gas control and production safety .


2013 ◽  
Vol 295-298 ◽  
pp. 2859-2863
Author(s):  
Yong Li Liu ◽  
Yuan Ping Ma ◽  
Tao Qin ◽  
Chang Ji Dong

Based on the analysis of geologic structure evolution and distribution characteristic in the Shengli Mine, which studied the influence that the mine geological structure, roof and floor lithologic of coal seam and elevation of seam floor, made on mine gas occurrence, combined with geological data and a large number of experimental data. Detailed elaboration about the situation in the Shengli Mine gas geology law, and prediction about gas emission and the dangerous of gas regional outburst. The results show that the gas content of the seam would be increases with the depth of the seam increases; There would be an abnormal phenomenon occurred at the geological fault about the gas occurrence, which is especially obvious in fault fracture zone.


2012 ◽  
Vol 14 (4) ◽  
pp. 454-459
Author(s):  
Xiaobo XU ◽  
Hualing WU ◽  
Jianqiang WANG ◽  
Shengping WANG

2012 ◽  
Vol 546-547 ◽  
pp. 1483-1488
Author(s):  
Shu Ren Han ◽  
Jun Wang ◽  
Ling Liang ◽  
Xian Peng Liu

In the safety production of coal mine, monitoring exact and real-time mine parameter is very important and key problem. The monitoring system of mine environment with wireless is designed, which is based on the structure of wireless sensor network (WSN).The system includes sensor node, Sink node and monitoring center. In the paper, the function structure and hardware design of sensor are introduced for the monitoring of temperature, humidity and gas concentration, and the function structure and hardware design of sink node is designed. The system has low power, rapid real-timing, stable running. Etc. This can satisfy with the requirement of WSN and suit the monitoring of bad environments. It will have wide application prospect.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Lei Zhang ◽  
Lin Xu ◽  
Yong Xiao ◽  
NingBo Zhang

A coal mine in Datong is an integrated mine. At present, there is goaf in the upper and lower part of the mining coal seam. There is a lot of ponding in the goaf, which has great potential safety hazards for production. In order to find out the scope and location of ponding in goaf, the comprehensive geophysical exploration method combining transient electromagnetic method and high-density resistivity method is used to carry out the research. Firstly, the time-base, turn-off time, receiving delay, current, superposition times, and other parameters of the instrument are tested on the surface of known goaf to obtain the best instrument parameters, and the parameters are used to verify the feasibility of the research scheme; then, the transient electromagnetic method is used for large-area exploration on the surface of the mine, the suspected goaf ponding area is found through comprehensive analysis, and the high-density resistivity exploration is arranged in the suspected goaf ponding area. According to the obtained results, the scope and location of the goaf ponding area are accurately located through comprehensive analysis. The results show that there are two goaf ponding areas in the exploration area, which are located above the 8# coal seam currently mined; the range and location of goaf ponding area can be accurately obtained by using the comprehensive geophysical method of high-density electrical method and transient electromagnetic method. This method can provide reference for mine water prevention and control in Datong area and has great practical significance to ensure coal mine safety production.


Author(s):  
Xiaochuan Wang ◽  
Huixian Wang

At present, the situation of coal mine safety production is still grim. The key to solve the problem is to analyze the risk of management activities in the process of coal mine safety production. This paper takes the management activities in the process of coal mine safety production as the research object. Firstly, according to the coal mine safety production standardization management system, the safety production management activities are carried out layer by layer. Then, the Failure Mode and Effect Analysis (FMEA) is used to identify the human errors that lead to the failure of management activities at all levels of coal mine. Furthermore, the Fuzzy Set Theory is used to determine the evaluation results of experts on the risk level of coal mine safety production management activities. Combined with Bayesian network (BN), the risk assessment model of coal mine safety production management activities is established. Through the model, the risk probability of coal mine enterprise management activities is accurately calculated. According to the evaluation results, the risk of management activities in coal mine safety production is analyzed.


Sign in / Sign up

Export Citation Format

Share Document