Forklift Hydraulic System Design

2013 ◽  
Vol 303-306 ◽  
pp. 2748-2753 ◽  
Author(s):  
Chun Yu ◽  
You Min Wang ◽  
Chun Zhao

In order to improve design performance, shorten development cycles, reduce production cost, designed the forklift hydraulic system. By the analysis of the forklift tilting and lifting process, the forklift hydraulic system schematic is made. Based on the schematic, designed and calculated the size and operating parameter of hydraulic cylinder, the pump operating parameter, hydraulic valve operational parameter, hydraulic oil tank effective volume, pipe size, selected the appropriate hydraulic components, and checked the system pressure loss and temperature rise. The results show that the hydraulic system meets the requirements.

2011 ◽  
Vol 383-390 ◽  
pp. 1202-1207
Author(s):  
Tao Ping Yan

3201Z-type dump truck is modification desiged by EQ3208GJ dump truck chassis which the technical performance parameters are known, and using a lifting mechanism of air controlled hydraulic system. By analyzing the composition and working principle of air controlled hydraulic system and referring to similar models, the design of the tank, the limiting mechanism and power taker are conducted. By calculating the main technical parameters, including in the performances of the hydraulic cylinder and the hydraulic pump, the dump truck's special oil cylinder HG-E180X780 and gear pump CBT-E563 are selected. By the stability of the piston rod, the system pressure and cars lifting time are checked; the reasonability and safty of the design can be proved.


2012 ◽  
Vol 433-440 ◽  
pp. 3852-3857
Author(s):  
Tao Ping Yan

3201Z-type dump truck is modification desiged by EQ3208GJ dump truck chassis which the technical performance parameters are known, and using a lifting mechanism of air controlled hydraulic system. By analyzing the composition and working principle of air controlled hydraulic system and referring to similar models, the design of the tank, the limiting mechanism and power taker are conducted. By calculating the main technical parameters, including in the performances of the hydraulic cylinder and the hydraulic pump, the dump truck's special oil cylinder HG-E180X780 and gear pump CBT-E563 are selected. By the stability of the piston rod, the system pressure and cars lifting time are checked, the reasonability and safty of the design can be proved.


2012 ◽  
Vol 424-425 ◽  
pp. 598-602 ◽  
Author(s):  
You Min Wang ◽  
Chun Zhao ◽  
Jian Hua Zhang

In order to improve design performance, shorten development cycles, reduce production cost, we design and research the forklift hydraulic system, developed forklift hydraulic system diagram. Forklift virtual prototype’s 3-D solid modeling is designed by Pro / E three-dimensional software, and imported into the ADAMS environment. Add constraints and drivers exert the control function separately to the tilting cylinder and lifting cylinder, carry on the kinematics simulation. Through the analysis to the compound motion actuation control functional arrangement、the compound motion speed graph、the gate’s tilt angle graph、the tilting cylinder stress graph and the lifting cylinder stress graph, he simulation result indicated: each cylinder design is reasonable, the movement without interference,the reasonable work scope satisfied to the work size request


2012 ◽  
Vol 619 ◽  
pp. 455-458
Author(s):  
Wen Hua Li ◽  
Yu Ling Du

A digital hydraulic valve is a new control theory and method, it is through the electronic control unit installed in a conventional valve, and integrated processing, the formation of a wide variety of digital valve,By the digital-to-analog conversion element is directly connected with the computer. Using the computer output pulse number and frequency to control electro hydraulic system pressure and measurement. The system proposed can make the hydraulic system has the advantages of high efficiency, high speed, high reliability. And used Matlab/Simulink software to control system performance simulation analysis, experiment and simulation results show that, this system has great application prospect and practical value.


2012 ◽  
Vol 462 ◽  
pp. 833-838
Author(s):  
Hong Yan Yang ◽  
Ge Jin Hu

A comprehensive mathematical model of the hydraulic inlet and outlet throttle speed-regulating system was established that included most components’ dynamic characteristics such as the hydraulic cylinder, the throttle valve, the hydraulic pump, the relief valve. The simulink of matlab was used to emulate the equations. The system parameters for example throttle opening area, oil bulk modulus were analyzed how to influence the dynamic characteristics of throttle speed control system. How to correctly select circuit under working condition and how to improve equipment performance in the hydraulic system design are indicated through comparing the dynamic characteristics of inlet and outlet speed-regulating circuit.


2015 ◽  
Vol 727-728 ◽  
pp. 430-434
Author(s):  
Cheng Liang Li ◽  
Ming Su ◽  
Zhi Ping Xie

The motion order of thehoisting two-stage hydraulic cylinder will be affected by load. The paperresearches the script development of the AMESim based on python language, putsforward the numerical method of solving the maximum load of the hoistingtwo-stage hydraulic cylinder in the hydraulic system: set the preliminaryvalue, compare the simulation results whether the displacements of thetwo-stage hydraulic cylinder are equal, adopt "the dichotomy" theoryto iterate and in the end seek out the maximum load quickly. And paves a newvenue for predicting the maximum load two-stage hydraulic cylinder canwithstand in the hydraulic system design stage.


Author(s):  
Michael B. Rannow ◽  
Perry Y. Li

A method for significantly reducing the losses associated with an on/off controlled hydraulic system is proposed. There has been a growing interest in the use of on/off valves to control hydraulic systems as a means of improving system efficiency. While on/off valves are efficient when they are fully open or fully closed, a significant amount of energy can be lost in throttling as the valve transitions between the two states. A soft switching approach is proposed as a method of eliminating the majority of these transition losses. The operating principle of soft switching is that fluid can temporarily flow through a check valve or into a small chamber while valve orifices are partially closed. The fluid can then flow out of the chamber once the valve has fully transitioned. Thus, fluid flows through the valve only when it is in its most efficient fully open state. A model of the system is derived and simulated, with results indicating that the soft switching approach can reduce transition and compressibility losses by 79%, and total system losses by 66%. Design equations are also derived. The soft switching approach has the potential to improve the efficiency of on/off controlled systems and is particularly important as switching frequencies are increased. The soft switching approach will also facilitate the use of slower on/off valves for effective on/off control; in simulation, a valve with soft switching matched the efficiency an on/off valve that was 5 times faster.


2013 ◽  
Vol 300-301 ◽  
pp. 10-13
Author(s):  
Yuan Hui Li ◽  
Kui Sheng Chen ◽  
Jiang Hong Deng ◽  
Xin Yuan Chen

Rake-car’s driving system of ore reclaimer originally used crank and connecting rod mechanism as driving mechanism. The driving mechanism got some trouble that parts got severe wear and failure rate of mechanism was high. The hydraulic system is used to drive rake car in view of hydraulic driving system’s advantage. By analysis on existing problem of crank and connecting rod mechanism, the actual working load of equipment is tested and the working situation is analysed. The working situation of the hydraulic system is also analysed by computer simulation. By optimization of the hydraulic system design, the final design is determined. The whole system is actually used. It works well.


2014 ◽  
Vol 7 (4) ◽  
pp. 150-155
Author(s):  
Ye HUANG ◽  
◽  
Changsheng LIU ◽  
Shiongur Bamed ◽  
◽  
...  

2013 ◽  
Vol 278-280 ◽  
pp. 350-353 ◽  
Author(s):  
Feng Gao ◽  
Lin Jing Xiao ◽  
Shuai Guo ◽  
Hong Gang Ma

This paper mainly analyzes the hydraulic system principle during the monorail braking, and come to a conclusion that the spring stiffness and the throttle valve flow area are main factors affect the brake system. Then we use the MSC.EASY5 to modeling the hydraulic system, and simulate the unloading time of hydraulic cylinder under the spring force, the result shows that, the response time of a braking system can meet the requirement of the coal mine safety regulation, and change the flow area of throttle valve will affect the brake system.


Sign in / Sign up

Export Citation Format

Share Document