Experimental Investigation of Full-Order Observered and LQR Controlled Building-Like Structure Under Seismic Excitation

2013 ◽  
Vol 307 ◽  
pp. 316-320
Author(s):  
Mustafa Tinkir ◽  
Mete Kalyoncu ◽  
Yusuf Şahin

In this paper, the dynamic behaviour of two degree of freedom building-like structure system against unexpected input such as seismic excitation is considered by experimentally. Proposed system consists of two floors structure with active mass damping (AMD) and shaker. Passive and active mode deflection responses of the floors are investigated and also a cart is used to suppress vibrations, which moves linear direction and is mounted on the second floor. PV (proportional and velocity) control of the cart is realized in passive mode. Moreover LQR (Linear Quadratic Regulator) control is designed to control the cart in active mode while system under excitation. For this aim a full-order observer is designed and implemented to control strategy. Displacements of cart, deflections and accelerations results of the floors are presented separately for passive and active mode responses of the system in the form of graphics.

2013 ◽  
Vol 307 ◽  
pp. 126-130 ◽  
Author(s):  
Mustafa Tinkir ◽  
Mete Kalyoncu ◽  
Yusuf Şahin

This paper presents an experimental investigation for deflection control of two degree of freedom building-like structure system against scaled Northridge Earthquake by using PI (Proportional-Integral) controlled active mass damping. Proposed structure consist of two floors with a cart mounted on the second floor such as active mass damping (AMD) and which is used to suppress horizontal deflections. Moreover a shake table under the structure is used to create the acceleration effect of scaled earthquake. Kp and Ki gain parameters of PI controller is determined by observing passive mode behaviour of the structure against Northridge and it is used to control cart movement according to pre-determined deflection criterias of the floors. Deflection and acceleration results of the floors are obtained separately for passive and active mode responses of the system in the form of graphics.


2020 ◽  
Vol 10 (19) ◽  
pp. 6730
Author(s):  
Juan F. Patarroyo-Montenegro ◽  
Jesus D. Vasquez-Plaza ◽  
Fabio Andrade ◽  
Lingling Fan

This work proposes a power control strategy based on the linear quadratic regulator with optimal reference tracking (LQR-ORT) for a three-phase inverter-based generator (IBG) using an LCL filter. The use of an LQR-ORT controller increases robustness margins and reduces the quadratic value of the power error and control inputs during transient response. A model in a synchronous reference frame that integrates power sharing and voltage–current (V–I) dynamics is also proposed. This model allows for analyzing closed-loop eigenvalue location and robustness margins. The proposed controller was compared against a classical droop approach using proportional-resonant controllers for the inner loops. Mathematical analysis and hardware-in-the-loop (HIL) experiments under variations in the LCL filter components demonstrate fulfillment of robustness and performance bounds of the LQR-ORT controller. Experimental results demonstrate accuracy of the proposed model and the effectiveness of the LQR-ORT controller in improving transient response, robustness, and power decoupling.


2009 ◽  
Vol 16-19 ◽  
pp. 876-880
Author(s):  
Si Qi Zhang ◽  
Tian Xia Zhang ◽  
Shu Wen Zhou

The paper presents a vehicle dynamics control strategy devoted to prevent vehicles from spinning and drifting out. With vehicle dynamics control system, counter braking are applied at individual wheels as needed to generate an additional yaw moment until steering control and vehicle stability were regained. The Linear Quadratic Regulator (LQR) theory was designed to produce demanded yaw moment according to the error between the measured yaw rate and desired yaw rate. The results indicate the proposed system can significantly improve vehicle stability for active safety.


2020 ◽  
Vol 12 (4) ◽  
pp. 507-516
Author(s):  
Hazim M. Alkargole ◽  
◽  
Abbas S. Hassan ◽  
Raoof T. Hussein ◽  
◽  
...  

A mathematical model of controlling the DC motor has been applied in this paper. There are many and different types of controllers have been used with purpose of analyzing and evaluating the performance of the of DC motor which are, Fuzzy Logic Controller (FLC), Linear Quadratic Regulator (LQR), Fuzzy Proportional Derivative (FPD) ,Proportional Integral Derivative (PID), Fuzzy Proportional Derivative with integral (FPD plus I) , and Fuzzy Proportional Integral (FPI) with membership functions of 3*3, 5*5, and 7*7 rule bases. The results show that the (FLC) controller with 5*5 rule base provides the best results among all the other controllers to design the DC motor controller.


2011 ◽  
Vol 48-49 ◽  
pp. 335-344
Author(s):  
Meng Zeng Cheng ◽  
Zhen Lan Dou ◽  
Xu Cai

In this paper, a control strategy for operation of rotor side converter (RSC) of Doubly Fed Induction Generators (DFIG) is developed by injecting reactive power into the grid in order to support the grid voltage during and after grid fault events. The novel nonlinear control method is based on differential geometry theory, and exact feedback linearization is applied for control system design of DFIG. Then the optimal control for the linearized system is obtained through introducing the linear quadratic regulator (LQR) design method. Simulation results on a single machine infinite bus power system show that the proposed nonlinear control method can inject reactive power to fault grid rapidly, reduce the oscillation of active power and improve the transient stability of power system.


1996 ◽  
Vol 118 (3) ◽  
pp. 489-498 ◽  
Author(s):  
L. Palkovics ◽  
M. El-Gindy

Heavy vehicles play an economically important role in the transportation process, and their numbers have been increasing for several decades. The active safety of the highway system is an important consideration in the design of a heavy vehicle combination. In this paper, the handling characteristics of a 5-axle tractor-semitrailer is examined and used to test for the desired features of the vehicle’s handling and stability. Using these results the optimal control criterion is derived for the vehicle. Four different control strategies are examined by using the Linear Quadratic Regulator (LQR) approach. These are, active steering of the rear wheels of the tractor; active steering of the wheels of the trailer; active torque control in the fifth-wheel joint; and active yaw torque acting on the tractor. These controllers are designed and examined using a simplified linear vehicle model. In addition to discussing the above-mentioned approaches, this paper discusses a method of modifying the slip angles at the tractor’s rear (driven) axles, however the yaw torque at the tractor cg also can be controlled using what is called “unilateral braking.” As well, the replacement of the active torque control at the fifth wheel joint, by a control strategy based on the usage of controllable dampers at the fifth-wheel joint, will also be examined. In this case, a nonlinear mathematical model of the vehicle is used and a modified control strategy called the RLQR/H∞ approach is used to ensure the vehicle’s performance in the presence of parametric uncertainties. The examination of these control strategies is conducted by using a sophisticated non-linear vehicle model, and the influence of these control strategies on the vehicle’s directional and roll stability during severe path-follow lane-change manoeuvre is discussed.


Author(s):  
Antonius Nusawardhana ◽  
Stanislaw H. Zak

Optimality properties of synergetic controllers are analyzed using the Euler-Lagrange conditions and the Hamilton-Jacobi-Bellman equation. First, a synergetic control strategy is compared with the variable structure sliding mode control. The synergetic control design methodology turns out to be closely related to the methods of variable structure sliding mode control. In fact, the method of sliding surface design from the sliding mode control are essential for designing similar manifolds in the synergetic control approach. It is shown that the synergetic control strategy can be derived using tools from the calculus of variations. The synergetic control laws have simple structure because they are derived from the associated first-order differential equation. It is also shown that the synergetic controller for a certain class of linear quadratic optimal control problems has the same structure as the one generated using the linear quadratic regulator (LQR) approach by solving the associated Riccati equation.


Sign in / Sign up

Export Citation Format

Share Document