Kinematics Analysis for a 4-DOF Palletizing Robot Manipulator

2013 ◽  
Vol 313-314 ◽  
pp. 937-940 ◽  
Author(s):  
Yong Guo Zhao ◽  
Yong Fei Xiao ◽  
Tie Chen

In order to meet theneeds of high-speedpalletizing inlogistics automation industry, a 4 d4-DOF palletizingrobot manipulatorwas designed. Inthis paper,focusing on kinematic analysis, forward kinematics modeland inverse kinematics were introduced in detail.

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Song Gao ◽  
Jihong Chen ◽  
Shusheng Liu ◽  
Xiukun Yuan ◽  
Pengcheng Hu ◽  
...  

Abstract Due to their superior machining quality, efficiency, and availability, five-axis machine tools are important for the manufacturing of complicated parts of freeform surfaces. In this study, a new type of the five-axis machine tool was designed that is composed of four rotary axes as well as one translational axis. Given the structure of the proposed machine tool, an inverse kinematics analysis was conducted analytically, and a set of methods was then proposed to address the issues in the kinematic analysis, e.g., the singularity and multi-solution problems. Compared with traditional five-axis machine tools, which are typically composed of three linear axes and two rotary axes, the proposed machine tool exhibited better kinematic performance with machining parts with hub features, such as impellers, which was validated by simulations and real cuttings.


2014 ◽  
Vol 610 ◽  
pp. 28-34 ◽  
Author(s):  
Xiao Lin Ma ◽  
Hui Chai ◽  
Yun Jiang Li

This paper introduces the development of hot-line live working manipulators and gives a new configuration manipulator driven by hydraulic actuator firstly. Then, its forward kinematics equations are derived with homogenous transformation method. Finally, the analytical solutions of its inverse kinematics are solved under the condition that the posture of the end-effector is known and given with z-y-z Euler angles.


2014 ◽  
Vol 709 ◽  
pp. 316-322
Author(s):  
Xu Dong ◽  
Zhong Cai Zheng ◽  
Yan Gao ◽  
Zhen Ting Jiang ◽  
Hai Yong Xiao

The Power-On-Live Manipulator with hydraulic system can complete many different repair works in the Substation. This paper focuses on the study of the kinematics of six DOF manipulator, and establishes the forward kinematics equation based on the analysis of the whole power-on-live manipulator. The methods of analytical and geometric are used to complete the power-on-live manipulator’s inverse kinematics calculations, and then the effectiveness of the power-on-live manipulator’s forward and inverse kinematics are verified by the numerical simulation software and the dynamic simulation software.


2006 ◽  
Vol 129 (8) ◽  
pp. 793-798 ◽  
Author(s):  
Shi Zhi Xin ◽  
Luo Yu Feng ◽  
Hang Lu Bing ◽  
Yang Ting Li

The inverse kinematic analysis of the general 6R serial robot has been a very significant and important problem in the theory of the spatial mechanisms. Because the solution to inverse kinematics problem of the general 5R serial robot is unique and its assembly condition has been derived, a simple effective method for inverse kinematics problem of general 6R serial robot or forward kinematics problem of general 7R single-loop mechanism is presented based on a one-dimension searching algorithm. All the real solutions to inverse kinematics problems of the general 6R serial robot or forward kinematics problems of the general 7R single-loop mechanism can be obtained. The new method has the following features: (1) using one-dimension searching algorithm, all the real inverse kinematic solutions are obtained and it has higher computing efficiency; and (2) compared with the algebraic method, it has evidently reduced the difficulty of deducing formulas. The principle of the new method can be generalized to kinematic analysis of parallel mechanisms.


2012 ◽  
Vol 251 ◽  
pp. 191-195
Author(s):  
Xiao Xi Chen ◽  
Ping He ◽  
Liu Han

In this paper, the context of relative kinematic modeling, and the analysis of symmetric dual four-bar mechanism industrial robot are introduced. For such mechanism, its designation of the representative algorithm, and its simplification, simulation, verification and alternately analysis in Forward Kinematics Problems (FKP) and Inverse Kinematics Problem (IKP) were studied. Via such method, it’s possible to efficiently analyze and solve the both of FKP and IKP of symmetric dual planar four-bar mechanism. Thus this method can be applied for the design, simulation and verification for the robot with similar structure.


Author(s):  
Hideaki Takanobu

A five degrees-of-freedom (5-DOF) robot manipulator is used for the basic learning of mechanical system engineering. Students learned the forward kinematics as concrete applications of the mathematics, especially linear algebra. After making a manipulator, baton relay contest was done to understand the inverse kinematics by controlling the manipulator using a manual controller having five levers.


2014 ◽  
Vol 940 ◽  
pp. 153-158
Author(s):  
Run Xin Qu ◽  
Yuan Yuan Zou ◽  
Xiao Wei An ◽  
Si Jun Zhu

Giant structure processes involve highly dangerous manual welding operations. aiming at the welding for giant structures, tankers and other large work pieces, a five degrees of freedom (DOF) gantry type automatic welding robot was developed which has our own property right. Forward/inverse kinematics for the mechanical structure is analyzed in which pose of the welding torch is defined as a free vector. Then kinematics equations were proposed for torch pose fitting. Finally, simulation results for robot kinematics analysis and torch pose fitting were also proposed with Matlab. The result not only proves the feasibility of torch pose fitting, but also provides a basis for further study on kinematic analysis, torch pose fitting and off-line programming about gantry type automatic welding robot.


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Alexey Fomin ◽  
Anton Antonov ◽  
Victor Glazunov ◽  
Yuri Rodionov

The proposed study focuses on the inverse and forward kinematic analysis of a novel 6-DOF parallel manipulator with a circular guide. In comparison with the known schemes of such manipulators, the structure of the proposed one excludes the collision of carriages when they move along the circular guide. This is achieved by using cranks (links that provide an unlimited rotational angle) in the manipulator kinematic chains. In this case, all drives stay fixed on the base. The kinematic analysis provides analytical relationships between the end-effector coordinates and six controlled movements in drives (driven coordinates). Examples demonstrate the implementation of the suggested algorithms. For the inverse kinematics, the solution is found given the position and orientation of the end-effector. For the forward kinematics, various assembly modes of the manipulator are obtained for the same given values of the driven coordinates. The study also discusses how to choose the links lengths to maximize the rotational capabilities of the end-effector and provides a calculation of such capabilities for the chosen manipulator design.


Sign in / Sign up

Export Citation Format

Share Document