Fundamental Exercises in Mechanical Systems Engineering Using Robot Manipulator

Author(s):  
Hideaki Takanobu

A five degrees-of-freedom (5-DOF) robot manipulator is used for the basic learning of mechanical system engineering. Students learned the forward kinematics as concrete applications of the mathematics, especially linear algebra. After making a manipulator, baton relay contest was done to understand the inverse kinematics by controlling the manipulator using a manual controller having five levers.

2019 ◽  
Vol 29 ◽  
pp. 01015 ◽  
Author(s):  
Cristian Lăzureanu ◽  
Ciprian Hedrea ◽  
Camelia Petrişor

Altering the first integrals of an integrable system integrable deformations of the given system are obtained. These integrable deformations are also integrable systems, and they generalize the initial system. In this paper we give a method to construct integrable deformations of maximally superintegrable Hamiltonian mechanical systems with two degrees of freedom. An integrable deformation of a maximally superintegrable Hamiltonian mechanical system preserves the number of first integrals, but is not a Hamiltonian mechanical system, generally. We construct integrable deformations of the maximally superintegrable Hamiltonian mechanical system that describes the motion of two vortices in an ideal incompressible fluid, and we show that some of these integrable deformations are Hamiltonian mechanical systems too.


Robotica ◽  
2008 ◽  
Vol 26 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Hyeung-Sik Choi ◽  
Gyu-Deuk Hwang ◽  
Sam-Sang You

SUMMARYThis paper presents analysis and experimental verifications of a new robot manipulator with five degrees of freedom developed for the buffing operation of shoes. First, the forward and inverse kinematics are analyzed. Next, an analytic closed-form solution is rigorously derived for the joint angles corresponding to the position and orientation of the end-effector in Cartesian coordinates. A control system, including input/output interfaces and the related electronic system, is designed for the control of the mechanical structure of the buffing robot. Then, peripheral systems integrated with the conveyer, transfer device, and fixture device are designed for the sequential buffing process of shoes. Also, a graphic user interface (GUI) program including the forward/inverse kinematics, control algorithm, and communication program to interact the robot with the peripheral systems is developed by using visual C++ language. A new flexible toolholder (FTH) is proposed to compensate for the excessive applied force between deburring tools and shoes. Finally, the test results are provided to demonstrate the effectiveness of the proposed scheme.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4233 ◽  
Author(s):  
Zhihua Liu ◽  
Chenguang Cai ◽  
Ming Yang ◽  
Ying Zhang

The micro-electro-mechanical system (MEMS) dynamic inclinometer integrates a tri-axis gyroscope and a tri-axis accelerometer for real-time tilt measurement. The Stewart platform has the ability to generate six degrees of freedom of spatial orbits. The method of applying spatial orbits to the testing of MEMS inclinometers is investigated. Inverse and forward kinematics are analyzed for controlling and measuring the position and orientation of the Stewart platform. The Stewart platform is controlled to generate a conical motion, based on which the sensitivities of the gyroscope, accelerometer, and tilt sensing are determined. Spatial positional orbits are also generated in order to obtain the tilt angles caused by the cross-coupling influence. The experiment is conducted to show that the tested amplitude frequency deviations of the gyroscope and tilt sensing sensitivities between the Stewart platform and the traditional rotator are less than 0.2 dB and 0.1 dB, respectively.


Author(s):  
Chang-Jin Li ◽  
T. S. Sankar ◽  
A. Hemami

Abstract In this paper, two fast computational algorithms are developed for effective formulation for the linearized dynamic robot models with varying (kinematic and dynamic) link parameters. The proposed algorithms can generate complete linearized (inverse) dynamic models for robot manipulators, taking variations (e.g., inexactness, inconstancy, or uncertainty) of the kinematic and dynamic link parameters into account. They can be applied to any robot manipulator with rotational and/or translational joints, and can be utilized, also, for sensivitity analysis of similar mechanical systems. The computational complexity of these algorithms is only of order O(n), where n is the number of degrees-of-freedom of the robot manipulator.


Author(s):  
Yangmin Li ◽  
Qingsong Xu

A novel three-degrees-of-freedom (3-DOF) translational parallel manipulator (TPM) with orthogonally arranged fixed actuators is proposed in this paper. The mobility of the manipulator is analyzed via screw theory. The inverse kinematics, forward kinematics, and velocity analyses are performed and the singularities and isotropic configurations are investigated in details afterwards. Under different cases of physical constraints imposed by mechanical joints, the reachable workspace of the manipulator is geometrically generated and compared. Especially, it is illustrated that the manipulator in principle possesses a fairly regular like workspace with a maximum cuboid defined as the usable workspace inscribed and one isotropic configuration involved. Furthermore, the singularity within the usable workspace is verified, and simulation results show that there exist no any singular configurations within the specified workspace. Therefore, the presented new manipulator has a great potential for high precision industrial applications such as assembly, machining, etc.


2014 ◽  
Vol 11 (03) ◽  
pp. 1450017
Author(s):  
G. F. Torres del Castillo ◽  
O. Sosa-Rodríguez

It is shown that for a mechanical system with a finite number of degrees of freedom, subject to nonholonomic constraints, there exists an infinite number of Hamiltonians and symplectic structures such that the equations of motion can be written as the Hamilton equations, with the original constraints incorporated in the Hamiltonian structure.


Robotica ◽  
1988 ◽  
Vol 6 (4) ◽  
pp. 299-309 ◽  
Author(s):  
Kesheng Wang ◽  
Terje K. Lien

SUMMARYIn this paper we show that a robot manipulator with 6 degrees of freedom can be separated into two parts: arm with the first three joints for major positioning and wrist with the last three joints for major orienting. We propose 5 arms and 2 wrists as basic construction for commercially robot manipulators. This kind of simplification can lead to a general algorithm of inverse kinematics for the corresponding configuration of different combinations of arm and wrist. The approaches for numerical solution and closed form solution presented in this paper are very efficient and easy for calculating the inverse kinematics of robot manipulator.


2012 ◽  
Vol 4 (4) ◽  
Author(s):  
Oded Salomon ◽  
Alon Wolf

Hyper-redundant robots (HRR) have many more degrees of freedom (DOF) than required, which enable them to handle more constraints, such as those present in highly convoluted volumes. Consequently, they can serve in many robotic applications, while extending the reachability and maneuverability of the operator. Many degrees of freedom that furnish the HRR with its wide range of capabilities also provide its major challenges: mechanism design, control, and path planning. In this paper, we present a novel design of a HRR composed of 16DOF. The HRR is composed of two concentric structures: a passive backbone and an exoskeleton which carries self-weight as well as external loads. The HRR is 80 cm long, 7.7 cm in diameter, achieves high rigidity and accuracy and is capable of 180 deg bending. The forward kinematics of the HRR is presented along with the inverse kinematics of a link.


Author(s):  
Ping Ren ◽  
Ya Wang ◽  
Dennis Hong

In this paper, the inverse and forward kinematics of a novel mobile robot that utilizes two actuated spoke wheels is presented. Intelligent Mobility Platform with Active Spoke System (IMPASS) is a wheel-leg hybrid robot that can walk in unstructured environments by stretching in or out three independently actuated spokes of each wheel. First, the unique locomotion scheme of IMPASS is introduced. Then the configuration of the robot when each of its two spoke wheels has one spoke in contact with the ground is modeled as a two-branch parallel mechanism with spherical and prismatic joints. An equivalent serial manipulator of the 2-SP mechanism with the same degrees of freedom is proposed to solve for the inverse and forward kinematic problems. The relationship between the physical limits of the stroke of the spokes (effective spoke length) and the limits of its equivalent degree of freedom is established. This approach can also be expanded to deal with the forward and inverse kinematics of other configurations which has more than two ground contact points. Several examples are used to illustrate the method. The results obtained will be used in the future research on the motion planning of IMPASS walking in unstructured environment.


Sign in / Sign up

Export Citation Format

Share Document