A Finite Element Analysis in Structural Design of Wall-Troweling Robot

2013 ◽  
Vol 325-326 ◽  
pp. 1083-1086
Author(s):  
Yu Ming Han ◽  
Mei Jing Guo

The troweling of wall space is an essential decorative process and the development of wall-troweling robots, which are expected to release labors from the burdensome pargeting tasks, is growing to be a promising sector in todays architectural industry. In this paper, a static analysis is conducted for the key components of troweling disk and vertical guiderail, based on the proposed virtual prototype of wall-troweling robots. The stress distribution across these components provides a sound basis for the structural design. With the finite element analysis module of SolidWorks package, the paper investigates the modal characteristics of the key components operating under practical conditions. The research effort in this paper is contributive to the design and manufacturing of wall-troweling robots.

2013 ◽  
Vol 483 ◽  
pp. 297-300
Author(s):  
Jia Qi Jin ◽  
Ye Yuan ◽  
Xian Rong Wang

Based on the finite element analysis of the slip coat in the compulsory lifting system of hyper-thermal snubbing operation injected by steam, the static analysis with regard to the slip coat is undoubtedly employed taking advantage of the finite element software. And then, the failure forms are deduced and the maximum allowable stress is calculated by analyzing the stress distribution.


2012 ◽  
Vol 605-607 ◽  
pp. 397-400
Author(s):  
Dong Qing Lv

Completed the finite element static analysis on the crossbeam of a certain type of automatic hydraulic tile press and discussed stress and transfiguration of the crossbeam. The result can provide reference for design, and the discussion will be useful for mechanical engineering.


2011 ◽  
Vol 201-203 ◽  
pp. 1352-1355
Author(s):  
Hai Lang Liu ◽  
Rui Bin Zhang ◽  
Yi Ping Huang

Through the example of the electron gun deflection coil, this paper implements the structure modeling with ProE and makes the finite element analysis with ANSYS .The structure analysis is performed by the combination of the advantages of two softwares. The reasonableness of the design is verified. This method helps to optimize the structural design of the coil. The production of precision of the coil was improved, and coil size can effectively control and reduce material waste.


2014 ◽  
Vol 680 ◽  
pp. 249-253
Author(s):  
Zhang Qi Wang ◽  
Jun Li ◽  
Wen Gang Yang ◽  
Yong Feng Cheng

Strain clamp is an important connection device in guy tower. If the quality of the compression splicing position is unsatisfied, strain clamp tends to be damaged which may lead to the final collapse of a guy tower as well as huge economic lost. In this paper, stress distribution on the compressible tube and guy cable is analyzed by FEM, and a large equivalent stress of guy cable is applied to the compression splicing position. During this process, a finite element model of strain clamp is established for guy cables at compression splicing position, problems of elastic-plastic and contracting are studied and the whole compressing process of compressible position is simulated. The guy cable cracks easily at the position of compressible tube’s port, the inner part of the compressible tube has a larger equivalent stress than outside.


2011 ◽  
Vol 94-96 ◽  
pp. 2153-2156
Author(s):  
Dong Ling Yu

The mainframe of high-pressure grouting machine used for daily ceramics is the main load bearing member, and it has high strength and stiffness requirements. The finite element static analysis on mainframe is discussed in this paper for researching its stress and transfiguration. The result can provide reference for design, and the discussion has some generality and practical value engineering.


Author(s):  
Eyassu Woldesenbet ◽  
Haftay Hailu

The need for the rehabilitation of bridges and structures is becoming more apparent as the number of deficient civil structure grows and the cost of replacement is becoming prohibitive. These leads to the search of alternative methods, such as rehabilitation, to put the deteriorated structures back to normal operation with the least possible cost. One such method is the use of composite plates adhesively bonded to concrete as reinforcement and to prevent the propagation of crack within the concrete structure. In this study the load transfer and the resulting stress distribution in the composite-concrete adhesion system is investigated using the finite element method. The effects of the different bond parameters are studied using the finite element. In addition, results of the finite element analysis are proved to be in agreement with the analytical solution of shear stress distribution in the adhesion layer that was developed in previous studies by the authors.


2015 ◽  
Author(s):  
Qi Wang ◽  
Ji Zeng ◽  
Yong Yang

The self-elevating drilling units are widely used in the offshore industry for oil and gas exploration. The drill floor structure is the main part of the drilling package for a self-elevating drilling unit due to its key function. Its structural strength checking is of great significance on account of the special structure features and the complex combined loading conditions it suffers. The sufficient structural strength of the drill floor is the base and guarantee for safe drilling and extraction. The finite element method was applied to calculate the structural strength of the drill floor directly considering different load cases which was the combination of environmental loads, permanent loads, variable function loads, and reaction forces from structures and equipments. Total forty load cases were set in the finite element analysis. A detailed finite element model without simplification of the drill floor was built correctly so that it can show the accurate stiffness of the real structure. Based on this model, the design method and the design criterion of the drill floor were described in detail. The environmental loads were calculated according to ABS MODU rules. The influence of the direction of the environmental loads on the drill floor were studied and concluded. Since the drill floor was not just welding with the cantilever beam, the boundary conditions were also particularly introduced owning to the complex connection between them. After finite element analysis and calculation, the stress distribution of the whole drill floor which includes the main girders and derrick supports were obtained. The locations with high stress were found so those places should be paid more attention. The curves which show the stress variation according to the environment loading direction were drawn and their characteristics were found. The load case and the load which have the main effect on drill floor structure were found. As a result, the suggestions for design improvement were put forward for the structural design, and the finite element analysis was run again to test and verify the design improvement. This paper can provide meaningful guidance for the future design of the drill floor.


2009 ◽  
Vol 628-629 ◽  
pp. 299-304
Author(s):  
C.Y. Lv ◽  
W.W. Shi ◽  
Xian Hai Yang

The design of lifting device for a large-scale dynamic sculpture at tourist district was introduced. According to its own characteristics of lift device, the "back-to-back" style of rack and pinion for the lift system was designed. It was used the finite element analysis software to analyze the strength of the rack and pinion which is a key part of the lift device. According to the stress of dedendum for the pinion is too bad, it was proposed that increased the radius of the fillet for dedendum.


2011 ◽  
Vol 460-461 ◽  
pp. 44-47
Author(s):  
Wei Hua Kuang

The cold expanding diameter process was simulated by the software of DEFORM. The finite element model of tube and dies were built. The object position definition, the inter object setting, movement definition and simulation step were correctly set. The deformation, total velocity distribution and equivalent stress distribution were predicted. The numerical simulation results showed that the finite element analysis could exactly describe the plastic deformation and stress distribution during the forming process.


Sign in / Sign up

Export Citation Format

Share Document