The Finite Element Analysis on the Mainframe of High-Pressure Grouting Machine

2011 ◽  
Vol 94-96 ◽  
pp. 2153-2156
Author(s):  
Dong Ling Yu

The mainframe of high-pressure grouting machine used for daily ceramics is the main load bearing member, and it has high strength and stiffness requirements. The finite element static analysis on mainframe is discussed in this paper for researching its stress and transfiguration. The result can provide reference for design, and the discussion has some generality and practical value engineering.

2012 ◽  
Vol 184-185 ◽  
pp. 235-238
Author(s):  
Zhi Cheng Huang ◽  
Ze Lun Li

The frame of 4MPa vertical type high-pressure grouting machine is used as the research object. The finite element analysis software ANSYS is applied to the modal finite element analysis of the frame. The first five order natural frequencies and the corresponding vibration modes of the frame are obtained, and then the influence of every mode shape on the performances of the frame was discussed. It provides a reference for the dynamic structural design and optimization of the frame of vertical type high-pressure grouting machine.


2012 ◽  
Vol 605-607 ◽  
pp. 397-400
Author(s):  
Dong Qing Lv

Completed the finite element static analysis on the crossbeam of a certain type of automatic hydraulic tile press and discussed stress and transfiguration of the crossbeam. The result can provide reference for design, and the discussion will be useful for mechanical engineering.


2012 ◽  
Vol 538-541 ◽  
pp. 2681-2684
Author(s):  
Zhi Cheng Huang

Took a type of ceramics for daily use vertical type high pressure grouting machine as the object of study, study the stress and strain of its upper and lower mould plates. Established their 3D model by CAD software Pro-E, and then import them into finite element analysis software to analysis the value and distribution of the stress and strain. The analysis results can provide some reference for design, and have some engineering and practical value.


2012 ◽  
Vol 190-191 ◽  
pp. 832-835
Author(s):  
Xian Zhong Yi ◽  
Sheng Zong Jiang ◽  
Jun Feng Zhang ◽  
Ding Feng ◽  
De Li Gao

Abstract. The ship side flap valve underwater works with high pressure. In this paper, the valve body is analyzed using seamless connection between the finite element analysis software and Pro/E software. In the analysis, multiple load cases applied to the valve body are as follows: open condition, closed condition and seal test. The analysis result shows the maximum stress value occurs when the flap valve is open. Moreover, stress value is approximately 65 percent the range of the minimum yield strength, but the strength requirement of the valve body is satisfied. Finally, this paper presents a method for weakening the stress concentration effect by increasing the internal transitional fillet radius between the two hollow and intersectant cylinders of the valve body.


2013 ◽  
Vol 482 ◽  
pp. 15-19
Author(s):  
Chen Xing Yang ◽  
Zheng Liu ◽  
Li Ping Sun ◽  
Jiong Li

Based on the experimental study of shear strengthened of reinforced concrete rectangular beam strengthened by high-strength steel wire mesh and polymer mortar , the finite element extended analysis was used. The finite element analysis software showed that with the increasing of the strand dosage and reinforcement strand length,the shear strength and stiffness of strengthened members improved . However,with the increasing of shear span ratio , the shear strength and stiffness reduced obviously .


Author(s):  
Kamran Asim ◽  
Jaewon Lee ◽  
Jwo Pan

In this study, the failure mechanism of laser welds in lap-shear specimens of a high strength low alloy (HSLA) steel under quasi-static loading conditions is examined based on the experimental results. Optical micrographs of the welds in specimens before tests were examined to understand the microstructure near the weld. A micrographic analysis of the failed welds in lap-shear specimens indicates a ductile necking/shear failure mechanism near the heat affected zone. Micro-hardness tests were conducted to provide an assessment of the mechanical properties of the joint area which has varying microstructure due to the welding process. A finite element analysis was also carried out to identify the effects of the weld geometry and different mechanical properties of the weld and heat affected zones on the failure mechanism. The computational results of the finite element analysis indicate that the material inhomogeneity and geometry of the weld bead play an important role in the ductile necking/shear failure mechanism. The computational results match well with the experimental observations of the necking/shear failure and its location. A finite element analysis with consideration of void nucleation and growth based on the Gurson yield function was also carried out. The results of the finite element analysis based on the Gurson yield function are in good agreement with the experimental observations of the initiation of ductile fracture and its location.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Jaewon Lee ◽  
Kamran Asim ◽  
Jwo Pan

In this study, the failure mechanism of laser welds in lap-shear specimens of a high strength low alloy (HSLA) steel under quasi-static loading conditions is examined based on the experimental and computational results. Optical micrographs of the welds in the specimens before tests were examined to understand the microstructure near the weld. A micrographic analysis of the failed welds in lap-shear specimens indicates a ductile necking/shear failure mechanism near the heat affected zone. Micro-hardness tests were conducted to provide an assessment of the mechanical properties of the joint area which has varying microstructure due to the welding process. A finite element analysis was also carried out to identify the effects of the weld geometry and different mechanical properties of the weld and heat affected zones on the failure mechanism. The results of the finite element analysis show that the geometry of the weld protrusion and the higher effective stress–plastic strain curves of the heat affected and weld zones result in the necking/shear failure of the load carrying sheet. The deformed shape of the finite element model near the weld matches well with that near a failed weld. A finite element analysis based on the Gurson yield function with consideration of void nucleation and growth was also carried out. The results of the finite element analysis indicate that the location of the material elements with the maximum void volume fraction matches well with that of the initiation of ductile fracture as observed in the experiments.


2013 ◽  
Vol 325-326 ◽  
pp. 1083-1086
Author(s):  
Yu Ming Han ◽  
Mei Jing Guo

The troweling of wall space is an essential decorative process and the development of wall-troweling robots, which are expected to release labors from the burdensome pargeting tasks, is growing to be a promising sector in todays architectural industry. In this paper, a static analysis is conducted for the key components of troweling disk and vertical guiderail, based on the proposed virtual prototype of wall-troweling robots. The stress distribution across these components provides a sound basis for the structural design. With the finite element analysis module of SolidWorks package, the paper investigates the modal characteristics of the key components operating under practical conditions. The research effort in this paper is contributive to the design and manufacturing of wall-troweling robots.


2010 ◽  
Vol 163-167 ◽  
pp. 1029-1032
Author(s):  
He Meng ◽  
Kun Yang ◽  
Qing Xuan Shi ◽  
Jin Jie Men

The finite element analysis of high-strength concrete columns confined by high-strength spiral lateral ties under concentric compression is introduced in this paper. The variables of tie strength, tie spacing and tie configuration influencing the characteristics of confined concrete are discussed; and the stress distributions of lateral ties and concrete at cross-section are analyzed. Compared with the test results, this finite element analysis can predict well the behavior of axially loaded concrete confined by lateral ties. It’s indicated that after peak load, normal stirrups loss the effective constraint on concrete due to yielding early, while the high-strength stirrups can continue to provide larger constraint which can improve significantly the ductility of confined concrete.


Sign in / Sign up

Export Citation Format

Share Document