Research of Intelligent Substation Condition Monitoring Based on the Neural Network

2013 ◽  
Vol 325-326 ◽  
pp. 692-696
Author(s):  
Da Peng Chai ◽  
Qiang Qiang Xue ◽  
Ling Mei Wang ◽  
Xing Yong Zhao

The substation electric power equipment condition monitoring is the basis of intelligent substation. This paper analyzes the composition of the substation electric power equipment condition monitoring system and monitoring parameters, and with the transformer condition monitoring as an example, this paper proposes fault diagnosis methods of electric power equipment using artificial neural network(ANN).

2005 ◽  
Vol 488-489 ◽  
pp. 793-796 ◽  
Author(s):  
Hai Ding Liu ◽  
Ai Tao Tang ◽  
Fu Sheng Pan ◽  
Ru Lin Zuo ◽  
Ling Yun Wang

A model was developed for the analysis and prediction of correlation between composition and mechanical properties of Mg-Al-Zn (AZ) magnesium alloys by applying artificial neural network (ANN). The input parameters of the neural network (NN) are alloy composition. The outputs of the NN model are important mechanical properties, including ultimate tensile strength, tensile yield strength and elongation. The model is based on multilayer feedforward neural network. The NN was trained with comprehensive data set collected from domestic and foreign literature. A very good performance of the neural network was achieved. The model can be used for the simulation and prediction of mechanical properties of AZ system magnesium alloys as functions of composition.


2022 ◽  
pp. 400-426
Author(s):  
Srinivasa P. Pai ◽  
Nagabhushana T. N.

Tool wear is a major factor that affects the productivity of any machining operation and needs to be controlled for achieving automation. It affects the surface finish, tolerances, dimensions of the workpiece, increases machine down time, and sometimes performance of machine tool and personnel are affected. This chapter deals with the application of artificial neural network (ANN) models for tool condition monitoring (TCM) in milling operations. The data required for training and testing the models studied and developed are from live experiments conducted in a machine shop on a widely used steel, medium carbon steel (En 8) using uncoated carbide inserts. Acoustic emission data and surface roughness data has been used in model development. The goal is for developing an optimal ANN model, in terms of compact architecture, least training time, and its ability to generalize well on unseen (test) data. Growing cell structures (GCS) network has been found to achieve these requirements.


Author(s):  
Magnus Fast ◽  
Thomas Palme´ ◽  
Magnus Genrup

Investigation of a novel condition monitoring approach, combining artificial neural network (ANN) with a sequential analysis technique, has been reported in this paper. For this purpose operational data from a Siemens SGT600 gas turbine has been employed for the training of an ANN model. This ANN model is subsequently used for the prediction of performance parameters of the gas turbine. Simulated anomalies are introduced on two different sets of operational data, acquired one year apart, whereupon this data is compared with corresponding ANN predictions. The cumulative sum (CUSUM) technique is used to improve and facilitate the detection of such anomalies in the gas turbine’s performance. The results are promising, displaying fast detection of small changes and detection of changes even for a degraded gas turbine.


2017 ◽  
Vol 12 (S333) ◽  
pp. 39-42
Author(s):  
Hayato Shimabukuro ◽  
Benoit Semelin

AbstractThe 21cm signal at epoch of reionization (EoR) should be observed within next decade. We expect that cosmic 21cm signal at the EoR provides us both cosmological and astrophysical information. In order to extract fruitful information from observation data, we need to develop inversion method. For such a method, we introduce artificial neural network (ANN) which is one of the machine learning techniques. We apply the ANN to inversion problem to constrain astrophysical parameters from 21cm power spectrum. We train the architecture of the neural network with 70 training datasets and apply it to 54 test datasets with different value of parameters. We find that the quality of the parameter reconstruction depends on the sensitivity of the power spectrum to the different parameter sets at a given redshift and also find that the accuracy of reconstruction is improved by increasing the number of given redshifts. We conclude that the ANN is viable inversion method whose main strength is that they require a sparse extrapolation of the parameter space and thus should be usable with full simulation.


2013 ◽  
Vol 641-642 ◽  
pp. 460-463
Author(s):  
Yong Gang Liu ◽  
Xin Tian ◽  
Yue Qiang Jiang ◽  
Gong Bing Li ◽  
Yi Zhou Li

In this study, a three-layer artificial neural network(ANN) model was constructed to predict the detonation pressure of aluminized explosive. Elemental composition and loading density were employed as input descriptors and detonation pressure was used as output. The dataset of 41 aluminized explosives was randomly divided into a training set (30) and a prediction set (11). After optimized by adjusting various parameters, the optimal condition of the neural network was obtained. Simulated with the final optimum neural network [6–9–1], calculated detonation pressures show good agreement with experimental results. It is shown here that ANN is able to produce accurate predictions of the detonation pressure of aluminized explosive.


Sign in / Sign up

Export Citation Format

Share Document