Effect of Load-Relieving Structure against Overload under High Overload

2013 ◽  
Vol 328 ◽  
pp. 421-425
Author(s):  
Quan Li Ning ◽  
Jun Li ◽  
Dong Chen ◽  
Gao Peng Wang

Three-dimensional visco-elastic lame deformation incremental constitutive equation is derived based on Total Lagrangian method, and structural dynamical response distribution in the grain during launching is simulated numerically by finite element method under high load condition for projectile-based equipment, the equivalent stress in the bottom of load-relieving structure and the Y-displacement in the top of load-relieving structure are calculated. The results show that the stress is ameliorated after the function of load-relieving subassembly, and it can decrease impact. Also Y-displacement is accord with limit request, and when reaching the maximum, the transmutation will be comeback.

2013 ◽  
Vol 648 ◽  
pp. 170-173
Author(s):  
Lu Lu ◽  
Zhao Xu Wang

In this paper, the simulation of the piercing process is performed by the three dimensional finite element method in Diescher’s mill. After a short description of the problem the numerical model of the process is described. The simulated results visualize dynamic evolution of equivalent stress, especially inside the work-piece. The non-uniform distribution of stress on the internal and external surface of the work-piece is a distinct characteristic of processing tube piercing. And it is the basic data for improving tool and design, predicting, damage and controlling the micro-structural evolution of processing tube piercing.


2012 ◽  
Vol 215-216 ◽  
pp. 239-243
Author(s):  
Ming Hui Zhang ◽  
Di Zhang ◽  
Yong Hui Xie

As the main bearing part in a turbine blade, the root carries most of the loads of the whole blade. The improvement of the root structure can be used to enhance the operation reliability of steam turbine. The research on design optimization for double-T root and rim of a turbine blade was conducted by three-dimensional finite element method. Based on the APDL (ANSYS parametric design language), a multi-variable parametric model of the double-T root and rim was established. Twelve characteristic geometrical variables of the root-rim were optimized to minimize the maximum equivalent stress. The optimal structure of the double-T root-rim is obtained through the optimization. Compared with the original structure, the equivalent stress level of the root and rim has a significant reduction. Specifically, the maximum equivalent stress of root and rim reduces by 14.25% and 13.59%, respectively.


Author(s):  
Noureddine Djebbar ◽  
B. Serier ◽  
Bel Abbès Bachir Bouiadjra

Stable osseointegration between implant threads and the surrounding marginal bone provides the mechanical base of an implant for daily chewing activity. The contact area of implant-bone interfaces and the concentrated stresses on the marginal bones are principal concerns of implant designers. In this work we numerically analyze by the finite element method the distribution of the equivalent stress and their level in the bone the most fragile element of the dental prosthesis. Each set of the model contained a crown, framework, abutment, implant and bone, subjected to variable dynamic loading according to time.


2020 ◽  
Vol 46 (3) ◽  
pp. 175-181
Author(s):  
Marcelo Bighetti Toniollo ◽  
Mikaelly dos Santos Sá ◽  
Fernanda Pereira Silva ◽  
Giselle Rodrigues Reis ◽  
Ana Paula Macedo ◽  
...  

Rehabilitation with implant prostheses in posterior areas requires the maximum number of possible implants due to the greater masticatory load of the region. However, the necessary minimum requirements are not always present in full. This project analyzed the minimum principal stresses (TMiP, representative of the compressive stress) to the friable structures, specifically the vestibular face of the cortical bone and the vestibular and internal/lingual face of the medullary bone. The experimental groups were as follows: the regular splinted group (GR), with a conventional infrastructure on 3 regular-length Morse taper implants (4 × 11 mm); and the regular pontic group (GP), with a pontic infrastructure on 2 regular-length Morse taper implants (4 × 11 mm). The results showed that the TMiP of the cortical and medullary bones were greater for the GP in regions surrounding the implants (especially in the cervical and apical areas of the same region) but they did not reach bone damage levels, at least under the loads applied in this study. It was concluded that greater stress observed in the GP demonstrates greater fragility with this modality of rehabilitation; this should draw the professional's attention to possible biomechanical implications. Whenever possible, professionals should give preference to use of a greater number of implants in the rehabilitation system, with a focus on preserving the supporting tissue with the generation of less intense stresses.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1421
Author(s):  
Michał Szulborski ◽  
Sebastian Łapczyński ◽  
Łukasz Kolimas ◽  
Łukasz Kozarek ◽  
Desire Dauphin Rasolomampionona ◽  
...  

In this paper, a detailed three-dimensional, transient, finite element method of fuse link NH000 gG 100 A is proposed. The thermal properties during the operation of the fuses under nominal (100 A) and custom conditions (110 and 120 A) are the main focus of the analyses that were conducted. The work concerns both the outside elements of the fuse link (ceramic body) and the elements inside (current circuit). Both the distribution of the electric current and its impact on the temperature of the construction parts of the fuses during their operating mode have been described. Temperature distribution, power losses and energy dissipation were measured using a numerical model. In order to verify and validate the model, two independent teams of scientists executed experimental research, during which the temperature was measured on different parts of the device involving the rated current. Finally, the two sets of results were put together and compared with those obtained from the simulation tests. A possible significant correlation between the results of the empirical tests and the simulation work was highlighted.


2020 ◽  
Vol 17 (3) ◽  
pp. 349-360
Author(s):  
Xiang-Zhong Chen ◽  
Yun-He Liu ◽  
Chang-Chun Yin ◽  
Chang-Kai Qiu ◽  
Jie Zhang ◽  
...  

2013 ◽  
Vol 387 ◽  
pp. 159-163
Author(s):  
Yi Chern Hsieh ◽  
Minh Hai Doan ◽  
Chen Tai Chang

We present the analyses of dynamics behaviors on a stroller wheel by three dimensional finite element method. The vibration of the wheel system causes by two different type barriers on the road as an experiment design to mimic the real road conditions. In addition to experiment analysis, we use two different packages to numerically simulate the wheel system dynamics activities. Some of the simulation results have good agreement with the experimental data in this research. Other interesting data will be measured and analyzed by us for future study and we will investigate them by using adaptive finite element method for increasing the precision of the computation results.


Sign in / Sign up

Export Citation Format

Share Document