Corrosion Properties of Al-Modified Austenitic Stainless Steel Prepared by Laser Cladding

2013 ◽  
Vol 331 ◽  
pp. 536-539
Author(s):  
Jian Bin Zhang ◽  
Dong Mei Yu ◽  
Jian Lin Xu

The layer of Al-modified austenitic stainless steel was formed by laser cladding with pre-placed FeNiCrAl powder on 304SS surface. No porosity and free of cracks was observed at power density of 31.25 w·s·mm-2. The microstructure of cladded layer was observed by OM (optical microscope) and SEM (scanning electron microscope). Compared with 304 (the substrate), laser cladding FeNiCrAl layer exhibit excellent pitting resistance in mixed acid solution. Anodic polarization curve indicated that the corrosion potential of laser cladding layer was 70 mV higher than that of 304SS (-345.7 mV), while self-corrosion current density of 304SS was 2.4 times as high as that of laser cladding layer.

2010 ◽  
Vol 146-147 ◽  
pp. 1238-1242
Author(s):  
Kyung Man Moon ◽  
Yun Hae Kim ◽  
Sung Jin Kim ◽  
Ji Hyeong Yoon ◽  
Youn Chang Lee ◽  
...  

Two types of welding methods were performed on austenitic 304 stainless steel: laser welding and TIG welding. The differences of the corrosion characteristics of the welded zones from the two welding methods were investigated with electrochemical methods, such as measurement of the corrosion potential, polarization curves, cyclic voltammogram, etc. The Vickers hardness of all laser-welded zones (WM:Weld Metal, HAZ:Heat-Affected Zone, BM:Base Metal) was relatively higher while their corrosion current densities exhibited a comparatively lower value than those which were TIG welded. In particular, the corrosion current density of the TIG-welded HAZ had the highest value among all other welding zones, which suggests that chromium depletion due to the formation of chromium carbide occurs in the HAZ, which is in the sensitization temperature range, thus it can easily be corroded with an active anode. Intergrenular corrosion was also observed at the TIG-welded HAZ and WM zones. Consequently, we can see that corrosion resistance of all austenitic 304 stainless steel welding zones can be improved via the use of laser welding.


2007 ◽  
Vol 546-549 ◽  
pp. 1821-1826
Author(s):  
Jian Hua Liu ◽  
Jun Xiu Shi ◽  
Song Mei Li ◽  
Jun Lan Yi

Galvanic properties were evaluated on bare and anodized Ti-1023 titanium alloy which coupled to Ni-electroplated, Zn-electroplated, Cd-electroplated 30CrMnSiA and anodized LY12, respectively. Corrosion properties including open circuit potential (Eoc) of each material, galvanic corrosion potential (Eg), and corrosion current (Ig) of the couples were monitored in conjunction with a Model 263A potentiostat system. Corrosion current density (Īg) and average value of corrosion potential (Ēg) were calculated from Ig-time and Eg-time curves, respectively. Corrosion morphology was observed on a optical microscope (OM) and corrosion mechanisms were analyzed and discussed. The corrosion resistance of Ti-1023/LY12 couple was significantly improved by Ti-1023 anodized coating. However, the coating accelerated the dissolve of the three electroplated coatings in the other galvanic couples, resulting in a heavy corrosion attack on 30CrMnSiA steel.


2005 ◽  
Vol 21 (2) ◽  
pp. 113-118 ◽  
Author(s):  
R. Jagdheesh ◽  
U. Kamachi Mudali ◽  
D. Sastikumar ◽  
A. K. Nath

2011 ◽  
Vol 38 (9) ◽  
pp. 0903007
Author(s):  
何祥明 He Xiangming ◽  
刘秀波 Liu Xiubo ◽  
杨茂盛 Yang Maosheng ◽  
石世宏 Shi Shihong ◽  
王明娣 Wang Mingdi ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1775 ◽  
Author(s):  
Aneta Kania ◽  
Ryszard Nowosielski ◽  
Agnieszka Gawlas-Mucha ◽  
Rafał Babilas

Magnesium alloys with rare earth metals are very attractive materials for medical application because of satisfactory mechanical properties. Nevertheless, low corrosion resistance is an obstacle in the use of Mg alloys as resorbable orthopedic implants. The paper presents results of mechanical and corrosion properties of MgCa5-xZn1Gdx (x = 1, 2, and 3 wt. %) alloys. Based on the microscopic observations it was stated that the studied alloys show a dendritic microstructure with interdendritic solute rich regions. The phase analysis reveals an occurrence of α-Mg and Mg2Ca, Ca2Mg6Zn3 phases that are thermodynamic predictions, and stated Mg26Zn59Gd7 phases in MgCa5-xZn1Gdx (x = 1, 2, and 3 wt. %) alloys. The Mg26Zn59Gd7 phases are visible as lamellar precipitations along interdendritic regions. It was confirmed that an increase of Gd content from 1 to 3 wt. % improves ultimate tensile (Rm; from 74 to 89 MPa) and compressive strength (Rc; from 184 to 221 MPa). Moreover, the studied alloys are active in Ringer’s solution. They are characterized by an increase of corrosion potential (Ecorr) of about 150 mV in comparison with values of open circuit potential (EOCP). The best electrochemical parameters (e.g., corrosion current density, icorr, polarization resistance, Rp, and Ecorr) were obtained for the MgCa3Zn1Gd2 alloy.


2011 ◽  
Vol 686 ◽  
pp. 197-201
Author(s):  
Qing Kun He ◽  
Hong Zhi Cui ◽  
Shao Hua Huang ◽  
Jin Quan Sun ◽  
Hong Guang Yang ◽  
...  

Laser cladding of Ni-based alloy on Mg-alloy was achieved by using brass as transition layer on substrate. The Ni-based alloy layer free of cracks and porosities was bonded metallurgically with the Mg substrate using brass as the transitional layer. The Ni-based cladding layer was mainly composed of Cr2Ni3, FeNi3, AlNi3 while the content of Mg, Al, Cu and Zn is very low in the cladding layer. Microhardness and the wear resistance of the sample were tested, whose results indicated that microhardness and wear resistance increased 12.8 times and 13.3 times, respectively compared with the substrate. In addition, the corrosion potential (Ecorr) of the sample was much higher than that of untreated materials.


2010 ◽  
Vol 73 ◽  
pp. 72-77
Author(s):  
Yoshihisa Nakazono ◽  
Takeo Iwai ◽  
Hiroaki Abe

The Super-Critical Water-cooled Reactor (SCWR) has been designed and investigated because of its high thermal efficiency and plant simplification. As the operating temperature of supercritical water reactor will be between 280°C and 620°C with a pressure of 25MPa, the selection of materials is difficult and important. The PNC1520 austenitic stainless steel developed by Japan Atomic Energy Agency (JAEA) as a nuclear fuel cladding material for a Na-cooled fast breeder reactor. The corrosion data of PNC1520 in supercritical water (SCW) is required but does not exist. The purpose of the present study is to research the corrosion properties for PNC1520 austenitic stainless steel in supercritical water. The supercritical water corrosion test was performed for the standard PNC1520 (1520S), the Ti-additional type of PNC1520 (1520Ti) and the Zr-additional type of PNC1520 (1520Zr) by using a supercritical water autoclave. In view of general corrosion, 1520Zr may have larger possibility than 1520S and 1520Ti to adopt a supercritical water reactor core fuel cladding.


Sign in / Sign up

Export Citation Format

Share Document