Study on 3D Model Reconstruction of Human Knee Joint Based on MRI

2013 ◽  
Vol 333-335 ◽  
pp. 934-937
Author(s):  
Yue Mei Han

Reconstruction of a 3D model for human knee joint is the basic step for its kinematics and dynamics analysis. To make further research on knee joint modeling, we present a new method to reconstruct 3D knee joint models based on magnetic resonance image (MRI). This method consists of steps as pretreatment of the images, the region growing for segmentation and the contour interpolation or the grey value interpolation and so on. The resulting 3D knee joint model are used for dynamics analysis of human knee joint after being imported into the finite-element platform which includes the tibia, the femur, the meniscus and the cartilages. The 3D model provides the possibility for the research on the movement roles and mechanics characteristics of the knee joint.

2019 ◽  
Vol 29 (2) ◽  
pp. 101-104
Author(s):  
Ruth Leskovar ◽  
Andreas Körner ◽  
Felix Breitenecker

Author(s):  
Yaghoub Dabiri ◽  
LePing Li

The mechanical response of the knee joint has been simulated using finite element methods with elastic material models [1–4]. Fluid pressurization in articular cartilage and menisci has not been considered in the anatomically accurate joint modeling until recently [5–7]. We have recently considered stress relaxation and creep behavior of human knees. The objective of the present study was to investigate the mechanics of the femoral cartilage under cyclical knee compression. We are particularly interested in the determination of loading versus unloading patterns for the fluid pressure and flow, as well as the influence of the loading frequency on the fluid pressurization.


Author(s):  
Dumitru I. Caruntu

This is a survey on 3-D dynamic and quasi-static human knee joint modeling. Anatomical surface representation, contact modeling, ligament structure, and solution algorithm are reviewed. Understanding knee joint biomechanics is important for total knee replacement and rehabilitation exercise design, ligament reconstruction, and cartilage damage. Knee models were proposed mostly in the last two decades. They aimed normal activities and rehabilitation exercises, and sought muscle, ligament, and joint contact forces. Consisting of two joints, tibio-femoral (TF) and patello-femoral (PF), the human knee 3-D models were PF, TF [1–3], and both TF and PF [4–7]. Models were static, quasi-static, and dynamic, including the entire, partial, or none of the ligament structure. Contact models of the knee were rigid or deformable. Both natural knees and replacement models were reported. Different groups of muscles were considered.


Author(s):  
Dumitru I. Caruntu

This is a review paper on human knee joint biomechanics modeling. Dynamic models and quasi-static models reported lately in the literature are included in this survey. Anatomical surface representation, contact modeling, ligament structure, and solution algorithm of these models are reviewed.


Author(s):  
Zhonglin Zhu ◽  
Guoan Li

Statistical shape model (SSM) has been established as a useful method for reconstruction of patient-specific 3D surface models, such as the hip or proximal femur using a single radiographic image of the joint [1, 2]. However, there are few studies that have reconstructed patient-specific 3D models of the entire knee joint. We propose to utilize the strong embedded spatial information in a 2D knee joint radiographic image to predict the 3D human knee joint shape model using the SSM method. We also present a preliminary study to test the accuracy of this method when applied to predict human knee joint shapes.


2018 ◽  
Vol 00 (1) ◽  
pp. 109-118
Author(s):  
Enas Y. Abdullah ◽  
◽  
Naktal Moid Edan ◽  
Athraa N. Kadhim ◽  
◽  
...  

1985 ◽  
Vol 18 (7) ◽  
pp. 541
Author(s):  
Ph. Edixhoven ◽  
R. Huiskes ◽  
Th.J.G. van Rens ◽  
T.J.J.H. Slooff

Sign in / Sign up

Export Citation Format

Share Document