Study on Repairing and Strengthening Measures of Reinforced Concrete Truss Arch Bridge

2013 ◽  
Vol 340 ◽  
pp. 64-68
Author(s):  
Hai Yan Luo ◽  
Qi Li ◽  
Dan Zhao

This thesis takes reinforced concrete truss arch bridge---Nanchengzi River Bridge as an example, and adopts bonded steel reinforcement method, section increasing method and deck reinforcement method to reinforce this bridge. It also adopts finite element method to make a calculation and analysis of stress condition of this bridge after reinforcement, and gain the maximum stress value and span deflection of this bridge after reinforcement, so as to provide useful reference for the repairing and reinforcement of this reinforced concrete truss arch bridge.

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Alamsyah Alam ◽  
A. B. Mapangandro ◽  
Amalia Ika W ◽  
M U Pawara

Ro - Ro Ferry is equipped with a connecting door between the port and the ship. The ramp door experiences load during loading and discharging of the rolling cargo. This repetitive load may cause fatigue failure. The structure of the ramp door should withstand this load. Therefore, The ramp door should be properly designed to ensure the structural integrity of the ramp door. The purpose of this research is to analyze the maximum stress and the Fatigue life of the bow ramp door. The method used is the finite element method. The given loads are several types of vehicles that are commonly transported by the ship. The given load case is the point load working at the girder plate and between the girder plate. Based on the simulation results with the given point load, the maximum stress is identified located between the girder for the large truck case with 397.02 MPa, while the minimum stress located at the girder for sedan car with 43.93 MPa. As for the fatigue life of the bow ramp door construction. it is 1.17 ~ 398.64 years, and the load cycle is 5.35 x 104 ~ 9.05 x 106 cycle. Keywords : Bow Ramp Door; Stress; Fatigue Life; Finite Element; Ferry


2016 ◽  
Vol 28 (3) ◽  
Author(s):  
Widia Hafsyah Sumarlina Ritonga ◽  
Janti Rusjanti ◽  
Nunung Rusminah ◽  
Aldilla Miranda ◽  
Tatacipta Dirgantara

Introduction: The surgical procedure of dental implant comprising one stage surgery for the non-submerged implant design and two stages for submerged. Submerged design is frequently used in Faculty of Dentistry Padjadjaran University as it is safer in achieving osseointegration. This study has been carried out to evaluate resistant capacity of an implant component design submerged against failure based on location and the value of internal stress during the application of mastication force using the 3D Finite Element Method (FEM). Methods: The present study used a CBCT radiograph of the mandibular patient and Micro CT Scan of one submerged implant. Radiograph image was then converted into a digital model of 3D computerized finite element, subsequently inputted the material properties and boundary condition with 87N occlusion load applied and about 29N for the shear force. Results: The maximum stress was found located at the contact area between the implant and alveolar crest with stress value registered up to 193.31MPa located within an implant body where is understandable that this value is far below allowable strength of titanium alloy of 860 MPa. Conclusion: The location of the maximum stress was located on the contact area between the implant-abutment and alveolar crest. This implant design is acceptable and no failure observed under mastication load.


2021 ◽  
Vol 3 (1) ◽  
pp. 95-105
Author(s):  
T. Makovkina ◽  
◽  
M. Surianinov ◽  
O. Chuchmai ◽  
◽  
...  

Analytical, experimental and numerical results of determination of natural frequencies and forms of oscillations of reinforced concrete and fiber concrete beams are given. Modern analytical, numerical and experimental methods of studying the dynamics of reinforced concrete and fiber concrete beams are analyzed. The problem of determining the natural frequencies and forms of oscillations of reinforced concrete and fiber concrete beams at the initial modulus of elasticity and taking into account the nonlinear diagram of deformation of materials is solved analytically. Computer modeling of the considered constructions in four software complexes is done and the technique of their modal analysis on the basis of the finite element method is developed. Experimental researches of free oscillations of the considered designs and the comparative analysis of all received results are carried out. It is established that all involved complexes determine the imaginary frequency and imaginary form of oscillations. The frequency spectrum calculated by the finite element method is approximately 4% lower than that calculated analytically; the results of the calculation in SOFiSTiK differ by 2% from the results obtained in the PC LIRA; the discrepancy with the experimental data reaches 20%, and all frequencies calculated experimentally, greater than the frequencies calculated analytically or by the finite element method. This rather significant discrepancy is explained, according to the authors, by the incorrectness of the used dynamic model of the reinforced beam. The classical dynamics of structures is known to be based on the theory of linear differential equations, and the oscillations of structures are considered in relation to the unstressed initial state. It is obvious that in the study of free and forced oscillations of reinforced concrete building structures such an approach is unsuitable because they are physically nonlinear systems. The concept of determining the nonlinear terms of these equations is practically not studied. Numerous experimental researches and computer modeling for the purpose of qualitative and quantitative detection of all factors influencing a spectrum of natural frequencies of fluctuations are necessary here.


2012 ◽  
Vol 178-181 ◽  
pp. 2273-2276
Author(s):  
Jie Jun Wang ◽  
Qing Liang Zhu ◽  
Xiao Liang Peng

Considering the transformation of the system and the increasing of the load in the construction process of long-span arch bridge, combining with the definite engineering example and calculating the construction process of arch bridge by using finite element method,focusing on the analysis of deformation and stress of arch bridge under the effect of shrinkage and creep in the process of construction.


2013 ◽  
Vol 816-817 ◽  
pp. 695-697
Author(s):  
Mei Huang ◽  
Hao Yuan ◽  
Juan Ma ◽  
J.N. Tang

In this article, finite element method is used to analyze the random vibration of the pressure vessel under the action of earthquake. The result shows that the maximum stress values are located at the bottom of the pressure vessel. At the same time, fatigue in this location has been analyzed. It can come to a conclusion that this pressure vessel meets the requirement of fatigue strength.


Sign in / Sign up

Export Citation Format

Share Document