Free Surface Green Function Research Based on Cloud Computing for Ship Movement on the Water

2013 ◽  
Vol 344 ◽  
pp. 27-30
Author(s):  
Cong Zhang ◽  
Xin Wang ◽  
Jie Zhao ◽  
She Sheng Zhang

In order to easy use Green function on cloud computation, the author consider control equation of point source with free surface, and discuss the representation of Green function on cloud computation, and then propose the discrete calculation expression as well as the calculation procedure. Finally, the two-dimensional graphics of the Green functions real and imaginary parts are plotted.

2012 ◽  
Vol 170-173 ◽  
pp. 1962-1965
Author(s):  
Xue Jiao Li ◽  
Xing Wang ◽  
Chao Liu ◽  
Meng Yu Li ◽  
She Sheng Zhang

According to the convenient using principle of cloud computation, the control equation and boundary condition of point source with free water surface are considered, the basic analyzing solution is obtained, the Green function representation is discussed., the discrete calculation expression and calculation procedure are proposed, two-dimensional graphics of the Green function’s real and imaginary part are plotted.


Author(s):  
D. C. Hong ◽  
S. Y. Hong ◽  
G. J. Lee ◽  
M. S. Shin

The radiation-diffraction potential of a ship advancing in waves is studied using the three-dimensional frequency-domain forward-speed free-surface Green function (Brard 1948) and the forward-speed Green integral equation (Hong 2000). Numerical solutions are obtained by making use of a second-order inner collocation boundary element method which makes it possible to take account of the line integral along the waterline in a rigorous manner (Hong et al. 2008). The present forward-speed Green integral equation includes not only the usual free surface condition for the potential but also the adjoint free surface condition for the forward-speed free-surface Green function as indicated by Brard (1972). Comparison of the present numerical results of the heave-heave wave damping coefficients and the experimental results for the Wigley ship models I, II and III (Journee 1992) has been presented. These coefficients are compared with those calculated without taking into account of the line integral along the waterline in order to show the forward speed effect represented by the waterline integral when it is properly included in the free-surface Green integral equation. Comparison of the present numerical results and the equivalent time-domain results (Hong et al. 2013) has also been presented.


Sign in / Sign up

Export Citation Format

Share Document