A Binocular Vision System for Underwater Target Detection

2013 ◽  
Vol 347-350 ◽  
pp. 883-890 ◽  
Author(s):  
Jie Shen ◽  
Hong Ye Sun ◽  
Hui Bin Wang ◽  
Zhe Chen ◽  
Yi Wei

For the underwater target detecting task, a binocular vision system specialized to the underwater optical environment is proposed. The hardware platform is comprised of a image acquising unit, a image processing unit and a upper computer. Accordingly, the loaded software system is operated for the camera calibration, image preprocessing, feature point extraction, stereo matching and the three-dimensional restoration. The improved Harris operator is introduced for the three-dimensional reconstruction, considering the high scattering and strong attenuation by the underwater optical environment. The experiment results prove that the improved Harris operator is better adapt to the complex underwater optical environment and the whole system has the ability to obtain the three-dimensional coordinate of the underwater target more efficient and accurate.

2020 ◽  
Author(s):  
Zunan Gu ◽  
Ji Chen ◽  
Chuansong Wu

Abstract Welding pool geometry includes plenty of welding quality information. The observation and reconstruction of the welding pool surface is the basis of developing intelligent control system for welding process to substitute skilled welders. The binocular vision system was ameliorated to capture images of welding pool surface by suppressing the strong arc interference during gas metal arc welding (GMAW). Combining and improving the algorithms of speeded up robust features, binary robust invariant scalable keypoints and KAZE, the feature information of points (i.e. RGB value, pixel coordinates and so on) was extracted as the feature vector of the welding pool surface. Based on the characteristic of welding images, the mismatch elimination algorithm was developed to increase the accuracy of image matching algorithms. The world coordinates of matching feature points was calculated to reconstruct the 3D shape of the welding pool surface. The effectiveness and accuracy of reconstruction for welding pool surface were verified by the experimental results.


2020 ◽  
Vol 17 (2) ◽  
pp. 172988142091000
Author(s):  
Jiaofei Huo ◽  
Xiaomo Yu

With the development of computer technology and three-dimensional reconstruction technology, three-dimensional reconstruction based on visual images has become one of the research hotspots in computer graphics. Three-dimensional reconstruction based on visual image can be divided into three-dimensional reconstruction based on single photo and video. As an indirect three-dimensional modeling technology, this method is widely used in the fields of film and television production, cultural relics restoration, mechanical manufacturing, and medical health. This article studies and designs a stereo vision system based on two-dimensional image modeling technology. The system can be divided into image processing, camera calibration, stereo matching, three-dimensional point reconstruction, and model reconstruction. In the part of image processing, common image processing methods, feature point extraction algorithm, and edge extraction algorithm are studied. On this basis, interactive local corner extraction algorithm and interactive local edge detection algorithm are proposed. It is found that the Harris algorithm can effectively remove the features of less information and easy to generate clustering phenomenon. At the same time, the method of limit constraints is used to match the feature points extracted from the image. This method has high matching accuracy and short time. The experimental research has achieved good matching results. Using the platform of binocular stereo vision system, each step in the process of three-dimensional reconstruction has achieved high accuracy, thus achieving the three-dimensional reconstruction of the target object. Finally, based on the research of three-dimensional reconstruction of mechanical parts and the designed binocular stereo vision system platform, the experimental results of edge detection, camera calibration, stereo matching, and three-dimensional model reconstruction in the process of three-dimensional reconstruction are obtained, and the full text is summarized, analyzed, and prospected.


2012 ◽  
Vol 522 ◽  
pp. 634-637
Author(s):  
Ke Yin Chen ◽  
Xiang Jun Zou ◽  
Li Juan Chen

In the picking robot binocular vision systems research, the camera calibration is often an indispensable step and these basements to locate the target of the object and rebuild the three-dimensional construction based on the robot stereo vision for the follow-up study. So, searching for a high accuracy and simple camera calibration algorithm is of great significance and necessary. However, For most of these camera calibration algorithms, it is necessary to establish a reference object, namely the target, in front of the camera at present, but posing the target is very not convenient or almost impossible in some cases. Therefore, a picking robot online calibration algorithm based on the vision scene was proposed by studying the work environment characteristics of the picking robot binocular vision system and the invariant projective geometry. The experimental results showed that this algorithm’s calibration accuracy and precision good meets to the requirement of the robot binocular vision system camera calibration in the complex environment.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5271
Author(s):  
Di Fan ◽  
Yanyang Liu ◽  
Xiaopeng Chen ◽  
Fei Meng ◽  
Xilong Liu ◽  
...  

Three-dimensional (3D) triangulation based on active binocular vision has increasing amounts of applications in computer vision and robotics. An active binocular vision system with non-fixed cameras needs to calibrate the stereo extrinsic parameters online to perform 3D triangulation. However, the accuracy of stereo extrinsic parameters and disparity have a significant impact on 3D triangulation precision. We propose a novel eye gaze based 3D triangulation method that does not use stereo extrinsic parameters directly in order to reduce the impact. Instead, we drive both cameras to gaze at a 3D spatial point P at the optical center through visual servoing. Subsequently, we can obtain the 3D coordinates of P through the intersection of the two optical axes of both cameras. We have performed experiments to compare with previous disparity based work, named the integrated two-pose calibration (ITPC) method, using our robotic bionic eyes. The experiments show that our method achieves comparable results with ITPC.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Zunan Gu ◽  
Ji Chen ◽  
Chuansong Wu

AbstractCurrent research of binocular vision systems mainly need to resolve the camera’s intrinsic parameters before the reconstruction of three-dimensional (3D) objects. The classical Zhang’ calibration is hardly to calculate all errors caused by perspective distortion and lens distortion. Also, the image-matching algorithm of the binocular vision system still needs to be improved to accelerate the reconstruction speed of welding pool surfaces. In this paper, a preset coordinate system was utilized for camera calibration instead of Zhang’ calibration. The binocular vision system was modified to capture images of welding pool surfaces by suppressing the strong arc interference during gas metal arc welding. Combining and improving the algorithms of speeded up robust features, binary robust invariant scalable keypoints, and KAZE, the feature information of points (i.e., RGB values, pixel coordinates) was extracted as the feature vector of the welding pool surface. Based on the characteristics of the welding images, a mismatch-elimination algorithm was developed to increase the accuracy of image-matching algorithms. The world coordinates of matching feature points were calculated to reconstruct the 3D shape of the welding pool surface. The effectiveness and accuracy of the reconstruction of welding pool surfaces were verified by experimental results. This research proposes the development of binocular vision algorithms that can reconstruct the surface of welding pools accurately to realize intelligent welding control systems in the future.


Sign in / Sign up

Export Citation Format

Share Document