Study on Flexural Toughness of Steel Fiber Reinforced Concrete in Dam Strengthening Project

2013 ◽  
Vol 351-352 ◽  
pp. 1474-1479
Author(s):  
Xin Rong Dai ◽  
Lei Zhu ◽  
Jian He Peng

Through the laboratory and field tests of flexural toughness for steel fiber reinforced concrete (SFRC) joists, the relations between different steel fiber contents/different mix proportions and the flexural toughness of SFRC were investigated, and an economic, reasonable mix proportion for moulded SFRC is thereby proposed. According to the study results, this paper may guide the design and construction to meet the requirements of dam strengthening projects and provide reference for the strengthening of similar water conservancy projects.

2021 ◽  
Vol 11 (18) ◽  
pp. 8759
Author(s):  
Eva Zezulová ◽  
Kamila Hasilová ◽  
Petr Dvořák ◽  
Branislav Dubec ◽  
Tereza Komárková ◽  
...  

Fortification structures, both military and civilian, are designed to resist a blast explosion to some extent. Their technical condition after a blast load must be assessed in a fast and reliable way to enable the users’ decision about the future use of the structure. Preferably, for the assessment of the protective structure, the non-destructive testing method should be used. To assess the suitability of ultrasound testing method for fortification structures built from steel fiber reinforced concrete, an investigation in a laboratory and in situ was conducted, together with numerical simulation and statistical evaluation. The numerical simulation of the blast load of a steel fiber reinforced concrete slab was conducted using multiphysics simulation software with the aim to verify basic parameters of the field experiment. During the field tests, several slabs were loaded by plastic explosive and changes in the structure of the slabs, before and after the blast load, were examined using the ultrasound pass-through method. After the field tests, the slabs were subjected to a destructive laboratory test to determine their residual strength. Subsequently, the data sets obtained from the measurements were tested using functional data analysis. The results from the ultrasound pulse method show that specimens after a dynamic blast load can in some cases increase the strength of their cement matrix.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 637 ◽  
Author(s):  
Xinxin Ding ◽  
Minglei Zhao ◽  
Siyi Zhou ◽  
Yan Fu ◽  
Changyong Li

With the sustainable development of green construction materials in civil engineering, self-compacting steel fiber reinforced concrete (SC-SFRC) has attracted widespread attention due to its superior self-compacting performance and excellent hardened properties. In this paper, 301 groups of test data from published literatures were collected to quantify the characteristics of the mix proportion of SC-SFRC. The type, aspect ratio and volume fraction of steel fiber commonly used in SC-SFRC are discussed and the effects of steel fiber on the workability and mechanical properties of SC-SFRC are statistically studied. The relationship of cubic compressive strength and water-to-binder ratio and that of the splitting tensile strengths between SC-SFRC and referenced self-compacting concrete (SCC) are also evaluated. Based on these analyses, the reasonable ranges of material components in the mix proportion design of SC-SFRC are determined. The results showed that with several adjusted parameters, the calculation model of the water-to-binder ratio for the mix proportion design of ordinary concrete is suitable for SC-SFRC. The calculation model of tensile strength is suggested for SC-SFRC with various types of steel fiber.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yancong Zhang ◽  
Lingling Gao

Tire production is increasing every year due to the increase in vehicle sales. The generation and disposal of waste are inherent to life itself and have presented very serious problems to the human community in China. Recently, some research has been devoted to the use of tire-recycled steel fibers in concrete. This study is focusing on the use of tire-recycled steel fibers. Several volume ratios of tire-recycled steel fibers were used in concrete mix to fabricate and test. Reinforced concrete obtains evidence and satisfactory improvement by adding tire-recycled steel fibers, mostly in compressive strength, splitting strength, flexural tensile strength, and flexural toughness. The strength and flexural toughness of the tire-recycled steel fiber reinforced concrete are lower than those of industrial steel fibers. To obtain concrete with approximately the same strength or toughness, the content of tire-recycled steel fibers should be about 1%-2% higher than that of industrial steel fibers. In addition, the load-deflection curve tends to become fuller after the first crack, and the second peak of the load continues to increase. The steel fiber reinforced concrete is getting closer to the ideal elastic-plastic material.


Sign in / Sign up

Export Citation Format

Share Document