scholarly journals Statistical Analysis and Preliminary Study on the Mix Proportion Design of Self-Compacting Steel Fiber Reinforced Concrete

Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 637 ◽  
Author(s):  
Xinxin Ding ◽  
Minglei Zhao ◽  
Siyi Zhou ◽  
Yan Fu ◽  
Changyong Li

With the sustainable development of green construction materials in civil engineering, self-compacting steel fiber reinforced concrete (SC-SFRC) has attracted widespread attention due to its superior self-compacting performance and excellent hardened properties. In this paper, 301 groups of test data from published literatures were collected to quantify the characteristics of the mix proportion of SC-SFRC. The type, aspect ratio and volume fraction of steel fiber commonly used in SC-SFRC are discussed and the effects of steel fiber on the workability and mechanical properties of SC-SFRC are statistically studied. The relationship of cubic compressive strength and water-to-binder ratio and that of the splitting tensile strengths between SC-SFRC and referenced self-compacting concrete (SCC) are also evaluated. Based on these analyses, the reasonable ranges of material components in the mix proportion design of SC-SFRC are determined. The results showed that with several adjusted parameters, the calculation model of the water-to-binder ratio for the mix proportion design of ordinary concrete is suitable for SC-SFRC. The calculation model of tensile strength is suggested for SC-SFRC with various types of steel fiber.

2011 ◽  
Vol 368-373 ◽  
pp. 357-360
Author(s):  
Lei Jiang ◽  
Di Tao Niu ◽  
Min Bai

Based on the fast freeze-thaw test in 3.5% NaCl solution, the frost resistance of steel fiber reinforced concrete (SFRC) was studied in this paper. On the basis of scanning electron microscope (SEM) and mercury intrusion method, the microstructure and pore structure of SFRC was analysed. The reinforced mechanism of SFRC under the cooperation of freeze-thaw and NaCl solution was discussed. The test results show that adding appropriate amount of steel fibers into concrete can reduce the pore porosity and improve the compactness of concrete. The effects of steel fiber with proper volume fraction can inhibit the peeling of the concrete and reduce its damage rate. The volume of steel fiber on the frost-resisting property of SFRC is obvious.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Pitcha Jongvivatsakul ◽  
Linh V. H. Bui ◽  
Theethawachr Koyekaewphring ◽  
Atichon Kunawisarut ◽  
Narawit Hemstapat ◽  
...  

In this paper, the performances of reinforced concrete (RC) beams strengthened in shear with steel fiber-reinforced concrete (SFRC) panels are investigated through experiment, analytical computation, and numerical analysis. An experimental program of RC beams strengthened by using SFRC panels, which were attached to both sides of the beams, is carried out to investigate the effects of fiber volume fraction, connection type, and number and diameter of bolts on the structural responses of the retrofitted beams. The current shear resisting model is also employed to discuss the test data considering shear contribution of SFRC panels. The experimental results indicate that the shear effectiveness of the beams strengthened by using SFRC panels is significantly improved. A three-dimensional (3D) nonlinear finite element (FE) analysis adopting ABAQUS is also conducted to simulate the beams strengthened in shear with SFRC panels. The investigation reveals the good agreement between the experimental and analytical results in terms of the mechanical behaviors. To complement the analytical study, a parametric study is performed to further evaluate the influences of panel thickness, compressive strength of SFRC, and bolt pattern on the performances of the beams. Based on the numerical and experimental analysis, a shear resisting model incorporating the simple formulation of average tensile strength perpendicular to the diagonal crack of the strengthened SFRC panels is proposed with the acceptable accuracy for predicting the shear contribution of the SFRC system under various effects.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Mohammed Alias Yusof ◽  
Norazman Mohamad Nor ◽  
Ariffin Ismail ◽  
Ng Choy Peng ◽  
Risby Mohd Sohaimi ◽  
...  

This paper presents the results of the experimental data and simulation on the performance of hybrid steel fiber reinforced concrete (HSFRC) and also normal reinforced concrete (NRC) subjected to air blast loading. HSFRC concrete mix consists of a combination of 70% long steel hook end fibre and also 30% of short steel hook end fibre with a volume fraction of 1.5% mix. A total of six concrete panels were subjected to air blast using plastic explosive (PE4) weighing 1 kg each at standoff distance of 0.3 meter. The parameters measured are mode of failure under static and blast loading and also peak overpressure that resulted from detonation using high speed data acquisition system. In addition to this simulation work using AUTODYN was carried out and validated using experimental data. The experimental results indicate that hybrid steel fiber reinforced concrete panel (HSFRC) possesses excellent resistance to air blast loading as compared to normal reinforced concrete (NRC) panel. The simulation results were also found to be close with experimental data. Therefore the results have been validated using experimental data.


2010 ◽  
Vol 150-151 ◽  
pp. 243-246 ◽  
Author(s):  
Lei Jiang ◽  
Di Tao Niu ◽  
Min Bai

In order to study various factor affecting durability of steel fiber reinforced concrete (SFRC), basic experimental research that combine the action of freezing-thawing cycles and deicing salt to SFRC was conducted. In the experiment, the volume fraction of steel fiber and number of freeze-thaw circulation are taken as variable parameter. Based on the different numbers of freeze-thaw circulation, weight losing of SFRC, splitting strength and the dynamic modulus of elasticity were measured. Furthermore, the reinforced mechanism of the SFRC under the action of freeze-thaw was analysed. The test results show that after adding a certain amount of steel fiber to the concrete, cracks in concrete at early stage are effectively prevented and the permeability of concrete is obviously reduced, thus the durability of concrete is improved. The reinforced actions of steel fiber on splitting strength of concrete are notable and the influence of steel fiber volume fraction on the frost-resisting property is obvious. On the contrary, the negative effects of steel fiber with high volume fraction on the splitting strength of concrete exist. The best performance of SFRC can be got when the steel fiber quantity is 1.5%.


2010 ◽  
Vol 163-167 ◽  
pp. 3569-3574
Author(s):  
Hong Qiang Cheng ◽  
Dan Ying Gao

Shrinkage experiments were done to determine the influence of the volume fraction of steel fiber-reinforcement on the bonding behavior between new concrete and old concrete. The mechanics of the model of restricted shrinkage upon the adherence of new steel fiber reinforced concrete to old concrete are described. The results demonstrate that the difference of shrinkage between the new and the old concrete can been reduced by adding steel fiber to the new concrete. The decrease of shrinkage difference reduces the shrinkage force at the adhesive interface, which improves the adhesion of new concrete to old concrete and the magnitude of the decrease of shrinkage difference is correlated to the steel fiber volume fraction.


2018 ◽  
Vol 9 (2) ◽  
pp. 1
Author(s):  
Mustaqqim Abdul Rahim ◽  
Omi Yanti Pohan ◽  
Mohd Badrul Hisyam Ab Manaf ◽  
Ahmad Nur Aizat Ahmad ◽  
Shahiron Shahidan ◽  
...  

Steel is one of the fibers used in fiber reinforced concrete technology. Steel fibers in concrete help to improve flexural  strength and  crack  resistance. Today,  there  are  critical  shortages of  natural  resources. In  this  research,  waste concrete is being used to produce recycled aggregate. The Recycled Coarse Aggregate (RCA) is partially replaced with the natural coarse aggregate (NCA) in concrete to analyze the mechanical properties of steel fiber reinforced concrete (SFRC). Several tests were conducted, such as compression and flexural tests. Five batches (A, B, C, D and E) of concrete cube and prism samples with different proportions of RCA (0%, 25%, 50%, 75% & 100%) and 1.5% volume fraction of steel fiber were tested, together with one control sample which used 100% NCA and 0% volume fraction of steel fiber. As a result, the control sample achieved 27.32 MPa in compression strength and 0.90 MPa for flexural strength while batch A managed to achieve 48.60 MPa and 1.10  MPa respectively. The cube and prism samples of all batches (A, B, C, D, E) showed decreasing compressive and flexural strength with increasing proportion of RCA in the concrete. Four samples fully achieved more than 20 MPa of compression strength and optimum flexural strength.


2013 ◽  
Vol 351-352 ◽  
pp. 1474-1479
Author(s):  
Xin Rong Dai ◽  
Lei Zhu ◽  
Jian He Peng

Through the laboratory and field tests of flexural toughness for steel fiber reinforced concrete (SFRC) joists, the relations between different steel fiber contents/different mix proportions and the flexural toughness of SFRC were investigated, and an economic, reasonable mix proportion for moulded SFRC is thereby proposed. According to the study results, this paper may guide the design and construction to meet the requirements of dam strengthening projects and provide reference for the strengthening of similar water conservancy projects.


Sign in / Sign up

Export Citation Format

Share Document