scholarly journals The Investigation on Flexural Toughness of Partially Steel Fiber Reinforced Concrete Immersed by Simulated Sea-Water

2017 ◽  
Vol 23 (4) ◽  
Author(s):  
Feng GAO ◽  
Jun Yu GUO ◽  
Hui YUAN ◽  
Lei Chun FAN ◽  
Ke LI
2013 ◽  
Vol 351-352 ◽  
pp. 1474-1479
Author(s):  
Xin Rong Dai ◽  
Lei Zhu ◽  
Jian He Peng

Through the laboratory and field tests of flexural toughness for steel fiber reinforced concrete (SFRC) joists, the relations between different steel fiber contents/different mix proportions and the flexural toughness of SFRC were investigated, and an economic, reasonable mix proportion for moulded SFRC is thereby proposed. According to the study results, this paper may guide the design and construction to meet the requirements of dam strengthening projects and provide reference for the strengthening of similar water conservancy projects.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yancong Zhang ◽  
Lingling Gao

Tire production is increasing every year due to the increase in vehicle sales. The generation and disposal of waste are inherent to life itself and have presented very serious problems to the human community in China. Recently, some research has been devoted to the use of tire-recycled steel fibers in concrete. This study is focusing on the use of tire-recycled steel fibers. Several volume ratios of tire-recycled steel fibers were used in concrete mix to fabricate and test. Reinforced concrete obtains evidence and satisfactory improvement by adding tire-recycled steel fibers, mostly in compressive strength, splitting strength, flexural tensile strength, and flexural toughness. The strength and flexural toughness of the tire-recycled steel fiber reinforced concrete are lower than those of industrial steel fibers. To obtain concrete with approximately the same strength or toughness, the content of tire-recycled steel fibers should be about 1%-2% higher than that of industrial steel fibers. In addition, the load-deflection curve tends to become fuller after the first crack, and the second peak of the load continues to increase. The steel fiber reinforced concrete is getting closer to the ideal elastic-plastic material.


2017 ◽  
Vol 59 (7-8) ◽  
pp. 653-660 ◽  
Author(s):  
Wang Yan ◽  
Ge Lu ◽  
Chen Shi Jie ◽  
Zhou Li ◽  
Zhang Ting Ting

2021 ◽  
pp. 136943322098165
Author(s):  
Hossein Saberi ◽  
Farzad Hatami ◽  
Alireza Rahai

In this study, the co-effects of steel fibers and FRP confinement on the concrete behavior under the axial compression load are investigated. Thus, the experimental tests were conducted on 18 steel fiber-reinforced concrete (SFRC) specimens confined by FRP. Moreover, 24 existing experimental test results of FRP-confined specimens tested under axial compression are gathered to compile a reliable database for developing a mathematical model. In the conducted experimental tests, the concrete strength was varied as 26 MPa and 32.5 MPa and the steel fiber content was varied as 0.0%, 1.5%, and 3%. The specimens were confined with one and two layers of glass fiber reinforced polymer (GFRP) sheet. The experimental test results show that simultaneously using the steel fibers and FRP confinement in concrete not only significantly increases the peak strength and ultimate strain of concrete but also solves the issue of sudden failure in the FRP-confined concrete. The simulations confirm that the results of the proposed model are in good agreement with those of experimental tests.


Sign in / Sign up

Export Citation Format

Share Document