Preliminary Research on Mechanical Behavior of Steel Frame Filled with Steel Plate Shear Wall after Exposure to Overall Stage of Fire

2013 ◽  
Vol 351-352 ◽  
pp. 90-94
Author(s):  
Xue Kun Liao ◽  
Fang Fang Wei ◽  
Li Hua Qu

For a further study on the fire-resistant performance of steel plate shear wall under overall stage of fire, a numerical analysis model of steel frame filled with steel plate shear wall was built with the finite element software ANSYS. The stress and displacement distribution at different moments were calculated through the thermal structural coupling analysis acording to ISO-834 standard fire curve, by reasonable selection of the thermal parameters, which showed the highest temperature appeared on the heated side of the beam in the process of heating up, while the highest temperature in the stages of cooling and natural cooling appeared in the column-beam connection; The temperature of structure was elevated for 11minutes, then dropped for 64.5minutes and finally the structure was cooled in the air for 60.5minutes. The whole process shows that the lateral load-bearing capacity of the steel frame filled with steel plate shear wall was reduced by about 30 percent, compared to room temperature.

2022 ◽  
Vol 189 ◽  
pp. 107067
Author(s):  
Zi-Qin Jiang ◽  
Tian Yan ◽  
Ai-Lin Zhang ◽  
Lei Su ◽  
Cun-Jie Shen

2014 ◽  
Vol 638-640 ◽  
pp. 1932-1936 ◽  
Author(s):  
Jian Hua Shao ◽  
Qun Wu

The seismic behavior factor of moment resisting steel frame-steel plate shear wall under two different horizontal loading patterns was investigated according to the maximum inter-story drift ratio reaching 1/50. It could be achieved with the same calculated standard as the foreign codes and the determined behavior factor was compared with foreign research results. The method using the software SAP2000 to calculate seismic behavior factor according to the maximum inter-story drift ratio reaching 1/50 was presented and the specific example was used to elaborate the operating process. The seismic behavior factor R, the overstrength factor RΩ and the ductility reduction factor Rμ of 10-storey 3-span steel frame-steel plate shear wall under the inverted triangle load are respectively 6.07, 2.96 and 2.05. while they are respectively 7.2, 3.37 and 2.13 under the uniform load. Finally, it can be concluded that the economic and reasonable design goals are achieved for this structure.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Jin-yu Lu ◽  
Lu-nan Yan ◽  
Yi Tang ◽  
Heng-hua Wang

To determine the force mechanism for the steel plate shear wall with slits, the pushover analysis method was used in this study. An estimated equation for the lateral bearing capacity which considered the effect of edge stiffener was proposed. A simplified elastic-plastic analytical model for the stiffened steel slit wall composed of beam elements was presented, where the effects of edge stiffeners were taken into account. The wall-frame analysis model was established, and the geometric parameters were defined. Pushover analysis of two specimens was carried out, and the analysis was validated by comparing the results from the experiment, the shell element model, and a simplified model. The simplified model provided a good prediction of the lateral stiffness and the strength of the steel slit wall, with less than 10% error compared with the experimental results. The mutual effects of the bearing wall and the frame were also predicted correctly. In the end, the seismic performance evaluation of a steel slit wall-frame structure was presented. The results showed that the steel slit wall could prevent the beams and columns from being damaged by an earthquake and that the steel slit wall was an efficient energy dissipation component.


2014 ◽  
Vol 578-579 ◽  
pp. 354-358
Author(s):  
Jian Hua Shao ◽  
Bai Jie Tang

Based on the time-history analysis principle of bidirectional equivalent tension rod of steel shear wall in this paper, the theory of Incremental Dynamic Analysis (IDA) is used to investigate the real seismic behavior of steel frame-steel plate shear wall (SPSW) system under a large number of natural earthquake waves and artificial simulated earthquake waves with the gradually increased scale of seismic intensity in order to achieve the base shear-roof displacement (V-Δ) curve under each earthquake wave action. Based on the principle of unidirectional equivalent tension rod, the pushover analysis is also used to obtain the curve of base shear and roof displacement under two different loading modes of uniform distribution and inverted triangular distribution. Through the above two different methods of seismic behavior evaluation, the achieved conclusions are as follows: The most V-Δ envelope curves obtained by IDA analysis are between V-Δ envelope curves obtained by pushover analysis under these two loading modes of inverted triangular and uniform distribution. With the increase of structural storey, the effect of high order mode on seismic behavior is more and more obvious and the deviation of calculation results derived from pushover is bigger and bigger. As a result, pushover analysis is only applied to evaluate seismic performance of structure at the middle or low storey. For the pushover, the structural bearing capacity and initial stiffness is underestimated, but the structural deformation capacity is overestimated under inverted triangular loading mode, Whereas, it is the opposite situation under the uniform distribution.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1516-1519
Author(s):  
Yong Song Shao ◽  
Feng Ru Shao

Due to mechanical performances of brace and steel plate, mechanical properties of semi-rigid joints and its construction and installation, semi-rigid steel frame-braced steel plate shear wall system is proposed. Nonlinear static analysis with parameters (thickness of plate, type of brace, size of brace and the ratio of span to height) changed of a single-span and single-floor semi-rigid steel frame-braced steel plate shear wall system illustrates that braced steel plate shear walls contributes obviously to bearing capacity and lateral rigidity of semi-rigid steel frame. Also, the finite element analysis (by ANSYS) show that semi-rigid steel frame-braced steel plate shear wall system has excellent ductility.


2013 ◽  
Vol 351-352 ◽  
pp. 219-222
Author(s):  
Xiao Tong Peng ◽  
Ying Ying Hou ◽  
Lei Xia

The semi-rigid steel frame-composite steel plate shear wall structure (SCSW) effectively improves the lateral stiffness of shear wall, making it possible to use the semi-rigid joint. In order to study the plastic failure mechanism of SCSW, a plastic model is established, in which the effects of the rotations of semi-rigid joints and yield deformations of infill steel walls on the energy consumption are considered. Based on that, a design method for the lateral ultimate strength is put forward and a nonlinear FEM model is setup using ANSYS. Through the comparison between plastic analysis results with the finite element results, it is shown that the plastic analysis method is feasible and has a safe redundancy.


Author(s):  
Guochang Li ◽  
Zengmei Qiu ◽  
Zhijian Yang

This paper mainly researched the behavior of double fish plate connector between steel plate shear wall structure and steel frame. Four single fish plate connectors and four double fish plate connectors were tested under monotonic and cyclic loading. The hysteretic curves, skeleton curves, stiffness degradation curve and ductility coefficient were considered to study the behavior of two connections. Results showed that the behavior of double fish plate connector between steel plate shear walls and steel frame was better than single fish plate connector. Double fish plate connectors had higher bearing capacity, slower stiffness degradation, better ductility and better energy dissipation capacity. Constraint effect of steel plate shear walls became stronger, and the out-of-plane buckling failure of steel plate shear walls was delayed. Therefore, the double fish plate connectors could improve the behavior of connection between steel plate shear walls and steel frame, and provide a reference for engineering application


Sign in / Sign up

Export Citation Format

Share Document