Design and Test of Self-Draining Pile

2013 ◽  
Vol 353-356 ◽  
pp. 289-292
Author(s):  
Fu Rong Li ◽  
Hou Chao Sun ◽  
Qian Zhou

putting out a new pile type, that is, making the precast concrete pile with a vertical side channel and pouring the yellow sand, which lead to the pile had the self-draining function, reduce the soil squeezing effect of precast concrete pile construction in saturated soft clay, that is, the design principles and methods of self-draining pile. Indoor model test showed that the self-draining piles could reduce the pore water pressure, and its effect was obviously, its role is equivalent to sand wells, sand bags wells or plastic drain board, which meet the requirements of the construction technique.

2013 ◽  
Vol 438-439 ◽  
pp. 1171-1175
Author(s):  
Zhi Li Sui ◽  
Zhao Guang Li ◽  
Xu Peng Wang ◽  
Wen Li Li ◽  
Tie Jun Xu

Dynamic consolidation method has been widely used in improving soft land, but always inefficient to saturated soft clay land, which is hard to improve, and even leads to rubber soil. Dynamic and drain consolidation method will deal with it well, with drainage system, pore-water can be expelled instantly from saturated soft clay as impacting. The pore-water pressure and earth pressure test in construction, the standard penetration test, plate loading test, geotechnical test after construction, which are all effective methods for effect testing. There is a comprehensive detection through different depth of soil layer with different detecting means on construction site. The results show that improving saturated soft clay land with dynamic and drain consolidation method has obtained good effect, and the fruit can be guidance for such construction in the future.


2013 ◽  
Vol 368-370 ◽  
pp. 1697-1700
Author(s):  
Long Zhang ◽  
Xue Wen Lei ◽  
Qing Shang Meng

Based on the characteristics of frequent land subsidence events caused by groundwater level fluctuation in coastal cities in China and studying on the quaternary sedimentary soft clay in Shanghai, the effects of groundwater level fluctuation on the deformation of soft clay is simulated by Geo-Studio finite element software. It has summarized the law of deformation, effective stress with the change of groundwater level fluctuation, especially the process of dissipation of pore water pressure with the groundwater level fluctuation. The low can be sued as a reference for similar engineering and land subsidence prevention.


2015 ◽  
Vol 773-774 ◽  
pp. 1502-1507
Author(s):  
Saiful Azhar Ahmad Tajudin ◽  
Mohd Fairus Yusof ◽  
I. Bakar ◽  
Aminaton Marto ◽  
Muhammad Nizam Zakaria ◽  
...  

Construction, buildings and infrastructure founded on soft clays are often affected by settlement problem. Therefore, Prefabricated Vertical Drain (PVD) is one of the best solutions to accelerate soil consolidation by shortening the drainage path. In this study, numerical investigation was carried out to pursue a better understanding of the consolidation behavior of soft clay improved with PVD. The consolidation process accelerated by PVD with surcharge of 50 kPa was analysed using the ABAQUS software by adopting an elastic model. The aim of this study is to compare the settlement and the required time to fully consolidate the soft soil at different drain spacings (1.0 m, 1.5 m and 2.0 m) for two different thickness of the clay layer. The results shows that the time required to completely consolidate the soft soil for 12 m and 20 m thickness of clay layer with different spacings are in the range of 3 months to 66 months. The settlement rate and excess pore water pressure dissipation are increased when the spacing of the drain closer.


1980 ◽  
Vol 102 (1) ◽  
pp. 49-54
Author(s):  
B. E. W. Dowse

The search for oil and gas has already extended to the Arctic areas of the world. To date conventional sand islands have been used for exploration drilling purposes in water depths of up to 43 ft. In deeper water exploration has only been possible using floating drilling equipment which can only operate during the short summer season of open water. This paper briefly outlines the geotechnical principles and development to date of hydrostatically supported sand islands. This construction technique, which utilizes hydrostatic water pressure to stabilize dredged sand at near vertical underwater slopes, would allow sand islands to be quickly and economically built in water depths of up to 200 ft. The hydrostatically supported sand island is a gravity structure and, therefore, is only suitable for use on competent seabed soils. This paper presents two different designs which are currently proposed for use as drilling structures in such areas as the Beaufort Sea. One design is intended for use as a movable exploration structure and the second for a permanent production island that would remain on location for 30 to 50 yr. The near vertical side slopes of the hydrostatically supported sand islands reduce the amount of sand required to manageable amounts, and allow the construction on location to be safely completed during the short Arctic summers. The sand provides sufficient mass to resist ice pressures.


1985 ◽  
Vol 22 (3) ◽  
pp. 357-374 ◽  
Author(s):  
D. J. Folkes ◽  
J. H. A. Crooks

Current methods of predicting the response of soft clays to surface loading are often unsuccessful because the assumed constitutive relationships, including effective stress path behaviour, are incorrect. In particular, the transition from small-strain to large-strain behaviour (i.e. yielding) is frequently not taken into account. Recent laboratory testing has demonstrated that the behaviour of soft clays is largely controlled by yielding. The locus of effective stress states causing yield is known as the yield envelope (YE).The effective stress paths (ESP's) in soft clay foundations below the centre of six fills were determined from computed total stresses and measured pore-water pressures. Yield behaviour is clearly indicated by ESP shapes. The yield envelopes inferred from analyses of field data are similar to those obtained from laboratory testing. Effective stress path shapes vary widely, depending on a variety of factors, including imposed stress level, rate of construction, and boundary drainage conditions. This finding contradicts an earlier conclusion that soft clay behaviour can be characterized by a single ESP. Because of the wide range of possible ESP shapes, the parameters [Formula: see text] does not provide an adequate basis for determining the effective stress state in a soft clay.The ESP/YE analyses indicate that yield can occur either during loading or during excess pore-water pressure dissipation following completion of loading. Yield of sensitive soils during loading is usually followed by strain softening. However, in some soils, dilatant behaviour appears to occur. Yield during dissipation of excess pore-water pressure is characterized by a dramatic change in cv and increased compressibility. Key words: soft clay, yield, effective stress paths, field behaviour, strain softening, rate of consolidation.


2011 ◽  
Vol 243-249 ◽  
pp. 2752-2758
Author(s):  
Quan Cao ◽  
Hong Chen

The self-boring pressuremeter test has potential advantages over the conventional in situ method in the geotechnical investigation. It not only provides fundamental soil properties for the designer, but also plays more important role in the geotechnical analysis. With help of Cambridge self-boring model pressuremeter tests, some new application are studied in this paper as following: (1) Analysis of stress paths in clays adjacent to the cavity wall during self-boring pressuremeter test; (2) Experimental investigation on stiffness of soils at small strain under non-linear analysis; and (3) Study on magnitude of the changes in pore-water pressure of clays, which will help to enlarge the application of self-boring pressuremeter test in geotechnical engineering.


2012 ◽  
Vol 226-228 ◽  
pp. 1019-1022 ◽  
Author(s):  
Pei Zhen Li ◽  
Dong Ya Ma ◽  
Da Ming Zeng ◽  
Xi Lin Lu

Liquefaction is one of the most important damages in pile foundation under earthquake. However, it is very difficult to analyze. Numerical simulation of pile-soil interaction considering saturated sand liquefaction under earthquake is conducted using OpenSees program. In this model, the soil is divided into soft clay soil and saturated sand, and the single pile is embedded in the soil. The results show that the pore water pressure rises and the soil liquefied as vibration time increases. With the nonlinear of the soil develop, the stiffness, bearing capacity and the acceleration response of the soil and the pile decrease, while the displacement response of the soil increases. Therefore, it is necessary to consider the soil liquefaction in the design and analysis in the engineering practice.


2011 ◽  
Vol 250-253 ◽  
pp. 1889-1892
Author(s):  
Yong Mou Zhang ◽  
Jian Chang Zhao

Consolidation coefficient and percent consolidation of soft clay were calculated according to the measured pore water pressure of a project in Pudong Shanghai. Calculated coefficient of consolidation was one magnitude larger than the experimental one. This was in conformity with the actual consolidation process of dynamically-consolidated soft soil.


1994 ◽  
Vol 31 (5) ◽  
pp. 773-778 ◽  
Author(s):  
Jianhua Yin ◽  
James Graham ◽  
Jack I. Clark ◽  
Longjun Gao

Field observations in thin soft clay layers may show pore-water pressures that increase for some time after the loading is applied. Reasons for these observations are not well understood. The paper shows how an elastic viscoplastic constitutive model incorporated into the consolidation equation can predict these pore-water pressure increases in soils that exhibit significant creep behaviour (or secondary compression). The phenomenon has been related to relaxation in regions of the profile from which drainage has not yet begun. Key words : clay, consolidation, creep, secondary compression, viscous, relaxation, pore-water pressure, elastic–plastic.


Sign in / Sign up

Export Citation Format

Share Document