Design of Hydrostatically Supported Sand Islands for Arctic Drilling

1980 ◽  
Vol 102 (1) ◽  
pp. 49-54
Author(s):  
B. E. W. Dowse

The search for oil and gas has already extended to the Arctic areas of the world. To date conventional sand islands have been used for exploration drilling purposes in water depths of up to 43 ft. In deeper water exploration has only been possible using floating drilling equipment which can only operate during the short summer season of open water. This paper briefly outlines the geotechnical principles and development to date of hydrostatically supported sand islands. This construction technique, which utilizes hydrostatic water pressure to stabilize dredged sand at near vertical underwater slopes, would allow sand islands to be quickly and economically built in water depths of up to 200 ft. The hydrostatically supported sand island is a gravity structure and, therefore, is only suitable for use on competent seabed soils. This paper presents two different designs which are currently proposed for use as drilling structures in such areas as the Beaufort Sea. One design is intended for use as a movable exploration structure and the second for a permanent production island that would remain on location for 30 to 50 yr. The near vertical side slopes of the hydrostatically supported sand islands reduce the amount of sand required to manageable amounts, and allow the construction on location to be safely completed during the short Arctic summers. The sand provides sufficient mass to resist ice pressures.

2021 ◽  
Author(s):  
Andrea Sbordone ◽  
Bernt Gramstad ◽  
Per Buset ◽  
Rafael Rossi ◽  
Charlie Tramier ◽  
...  

Abstract In a continuous effort to reduce cost and improve efficiency, the Oil and Gas industry has been trying for the last 10 years to develop methods to perform subsea Coiled Tubing (CT) operations from a vessel and without a riser. In September 2020 a large campaign of Riserless Coiled Tubing (RLCT) coring was successfully executed in the Norwegian Sea, on the Mohns Ridge, approximately 330 nautical miles from the coast. The campaign was performed from a small Anchor Handler Tug Supply vessel, the Island Valiant. A total of 14 open water gravity-fed RLCT runs were executed in water depths between 2780 and 3085 m. The system performed extremely well and proved to be very robust, efficient and effective for these innovative operations. This was the first time that RLCT coring operations were completed without the use of a subsea injector, in the so-called gravity-fed mode, and in such ultra-deep water. This paper describes the project in detail, including the system setup used, a summary of the operations and the actual results achieved, before discussing future improvements and applications of the RLCT technology.


2013 ◽  
Vol 353-356 ◽  
pp. 289-292
Author(s):  
Fu Rong Li ◽  
Hou Chao Sun ◽  
Qian Zhou

putting out a new pile type, that is, making the precast concrete pile with a vertical side channel and pouring the yellow sand, which lead to the pile had the self-draining function, reduce the soil squeezing effect of precast concrete pile construction in saturated soft clay, that is, the design principles and methods of self-draining pile. Indoor model test showed that the self-draining piles could reduce the pore water pressure, and its effect was obviously, its role is equivalent to sand wells, sand bags wells or plastic drain board, which meet the requirements of the construction technique.


Author(s):  
Aleksander A. Kondratenko ◽  
Oleg V. Tarovik

Due to the dynamic development of the oil and gas fields in the Arctic, the challenges of supply fleet sizing and composition in this region are becoming relevant. In most studies, the Arctic is mainly associated with ice conditions, but it is not the only factor that influences the design of platform supply vessels (PSV) and corresponding marine transport systems (MTS) for this region. The structure of cargo flow (i.e. its distribution by cargo types) affects the supply system significantly. It defines the level of utilization of vessel capacity that determines transport efficiency. At the same time, the literature represents this aspect poorly. This paper describes an approach to optimize supply fleet configuration by the criterion of total cost considering both non-stationary ice conditions and structure of cargo flows. The cargo-flow-oriented design concept incorporates the detailed calculation model of PSV and the special tactical planning algorithm. PSV model allows considering the influence of cargo spaces on the main characteristics and operational parameters of the ship. It covers the main design aspects of PSVs: general arrangement; lines plan; resistance in open water and ice; engine and propeller characteristics; hydrostatics; capacity and mass calculation. The pseudo-optimal tactical planning algorithm is intended to build the plan of voyages and to set the size of fleet considering the structure of cargo flow. As the test example, we examine a task of servicing the group of platforms in the Kara Sea. The case study shows that cargo flow structure has a high influence on the efficiency of PSVs in case of high-load operation; while a widespread “deck-cargo” approach is unable to consider this aspect because it ignores the vessel’s carrying capacity and payload. The conclusion about a higher efficiency of PSV compared to AHTS with the same displacement was drawn.


Author(s):  
N.S. Pyatykh ◽  
◽  
A.V. Grechischev

The paper briefly presents a methodological approach to processing multi-zone satellite images of moderate spatial resolution. This approach allows detecting oil spill sites with sufficient reliability during rapid response and subsequent liquidation of the consequences of man-made emergencies at oil and gas facilities. The properties of modern, often used for monitoring territories, space remote sensing tools are analyzed in relation to the monitoring of man-made emergencies. The object of the study is the vicinity of the CHPP 3 of the Norilsk-Taimyr Energy Company, where a major accident occurred on May 29, 2020 – a tank with diesel fuel was depressurized at the facility – and as a result of the spill, more than 20 tons of fuel fell into the waters of the Daldykan and Ambarnaya rivers. This is one of the largest leaks of petroleum products in the Arctic zone in history, posing a threat to the ecosystem of the Arctic Ocean. Processing and subsequent analysis of satellite images of the territory of interest and surrounding objects were made during the research. According to satellite images, it became possible to assess the scale of the environmental disaster.


2021 ◽  
Vol 937 (4) ◽  
pp. 042080
Author(s):  
E G Katysheva

Abstract Development processes in the Arctic zone require that a set of tasks related to the development or improvement of technologies, as well as to the optimization of project management methods be solved. It has been noted that in order to solve the tasks, fast updated Big Data is needed, the timely acquisition and processing of which will allow for unbiased assessment of the current situation, taking appropriate management decisions, and prompt adjusting as new factors arise. It has been concluded that the introduction of Big Data technology is considered to be the most efficient Industry 4.0 tool for geological survey, and data arrays on the state of exploration of the territories and the results of exploration drilling can serve as the basis for an information model of oil and gas exploration. It has also been found that the array accumulated by subsoil users in the course of scientific research makes it possible to significantly increase the state of exploration of the natural Arctic environment and assess in an unbiased manner the natural processes that occur in the areas of the northern seas. Based on the analysis of the collected data, to predict the state of the natural environment and further develop optimal technical and managerial solutions for the development of the Arctic fields is possible.


2019 ◽  
Vol 16 (6) ◽  
pp. 50-59
Author(s):  
O. P. Trubitsina ◽  
V. N. Bashkin

The article is devoted to the consideration of geopolitical challenges for the analysis of geoenvironmental risks (GERs) in the hydrocarbon development of the Arctic territory. Geopolitical risks (GPRs), like GERs, can be transformed into opposite external environment factors of oil and gas industry facilities in the form of additional opportunities or threats, which the authors identify in detail for each type of risk. This is necessary for further development of methodological base of expert methods for GER management in the context of the implementational proposed two-stage model of the GER analysis taking to account GPR for the improvement of effectiveness making decisions to ensure optimal operation of the facility oil and gas industry and minimize the impact on the environment in the geopolitical conditions of the Arctic.The authors declare no conflict of interest


Author(s):  
M.A. Magomedgadzhieva ◽  
◽  
G.S. Oganov ◽  
I.B. Mitrofanov ◽  
A.M. Karpov ◽  
...  

Author(s):  
Olga Mashtaler ◽  
Olga Mashtaler ◽  
Alexander Myasoedov ◽  
Alexander Myasoedov ◽  
Elizaveta Zabolotskikh ◽  
...  

The relevance of the polar lows (PLs) research is justified by their great destructive power and creation of threat to the safety of navigation in the high latitudes and along the Northern Sea Route. The most dangerous effects on maritime activities are strong winds, waves and icing. In addition, the study of the PLs acquires relevance due to the sharp decrease of the sea ice area in the Arctic in recent years and the emergence of areas of open water, suitable for the appearance and development of PLs. However, despite the importance of PLs, they are apparently not sufficiently studied. As there are no meteorological observations in the areas of their appearance, the main source of information about them are satellite observations. By using images on the SOLab SIOWS Arctic Portal from multiple satellites operating in the IR and visible ranges (e.g., MODIS and AVHRR), and using near-water wind fields from high resolution synthetic aperture radars (Sentine-1, ASAR) and low resolution scatterometers (ASCAT), we identify polar lows in various parts of the Arctic, revealing statistical regularities in the appearance of PLs, their distribution and intensity. Collected database of Pls and their characteristics will be used for further PLs forecasting model development.


2020 ◽  
pp. 88-99
Author(s):  
A. A. Tolmachev ◽  
V. A. Ivanov ◽  
T. G. Ponomareva

Ensuring the safety of oil and gas facilities and increasing their facility life are today one of the most important tasks. Emergencies related to rupture and damage of steel pipelines because of their wear and tear and external factors are still the most frequent cases of emergencies during the transportation of hydrocarbons. To expand the fuel and energy complex in the north, in the direction of the Arctic, alternative types of pipelines are needed that solve the problems of reducing energy and labor costs in oil and gas companies, reducing the risk of environmental disasters and depressurization of pipelines during hydrocarbon production. Fiber-reinforced thermoplastic pipes can be such an alternative. This article is devoted to a comparative analysis of the materials of a composite system consisting of a thermoplastic pipe (inner layer) and reinforcing fibers (outer layer); we are discussing the design of the structural system consisting of polyethylene (inner layer) and aramid fibers (outer reinforcing layer).


Sign in / Sign up

Export Citation Format

Share Document