Study on the Mechanism of Engineering Ceramics in Rotary Ultrasonic-Vibration Grinding

2013 ◽  
Vol 372 ◽  
pp. 158-164
Author(s):  
Chang Chun Yu

This paper analysis the process of Al2O3 engineering ceramics grinding and study the mechanism of rotary ultrasonic-vibration grinding. Then setting the model of the material removal rate and grinding force, which is based on Creasing fracture mechanics. Results indicate rotary ultrasonic-vibration grinding can apparently improve the material removal rate and cut down the grinding force.

2008 ◽  
Vol 375-376 ◽  
pp. 263-267 ◽  
Author(s):  
Feng Jiao ◽  
Bo Zhao ◽  
Chuan Shao Liu ◽  
Xun Sheng Zhu

A new ultrasonic aided lapping technology was developed by combining lapping technology and ultrasonic machining technology. The appended special tangential ultrasonic vibration changes the material removal rate (MRR) characteristics. In order to clarify the influence of ultrasonic vibration, in this paper, the MRR models in ultrasonic aided single-point scratch were deduced based on indentation fracture theory. Through contrast scratching and lapping experiments, the MRR characteristics in ultrasonic aided lapping of engineering ceramics were presented. Research result shows that the MMR in ultrasonic aided lapping is larger than that in conventional lapping under the same conditions; with the increase of ultrasonic generator power and lapping pressure, the MMR in lapping increases correspondingly.


Author(s):  
Gurpreet Singh ◽  
DR Prajapati ◽  
PS Satsangi

The micro-electrical discharge machining process is hindered by low material removal rate and low surface quality, which bound its capability. The assistance of ultrasonic vibration and magnetic pulling force in micro-electrical discharge machining helps to overcome this limitation and increase the stability of the machining process. In the present research, an attempt has been made on Taguchi based GRA optimization for µEDM assisted with ultrasonic vibration and magnetic pulling force while µEDM of SKD-5 die steel with the tubular copper electrode. The process parameters such as ultrasonic vibration, magnetic pulling force, tool rotation, energy and feed rate have been chosen as process variables. Material removal rate and taper of the feature have been selected as response measures. From the experimental study, it has been found that response output measures have been significantly improved by 18% as compared to non assisted µEDM. The best optimal combination of input parameters for improved performance measures were recorded as machining with ultrasonic vibration (U1), 0.25 kgf of magnetic pulling force (M1), 600 rpm of tool rotation (R2), 3.38 mJ of energy (E3) and 1.5 mm/min of Tool feed rate (F3). The confirmation trail was also carried out for the validation of the results attained by Grey Relational Analysis and confirmed that there is a substantial improvement with both assistance applied simultaneously.


2010 ◽  
Vol 154-155 ◽  
pp. 1604-1613
Author(s):  
Mohammad Reza Shabgard ◽  
Babak Sadizadeh ◽  
Keivan Amini ◽  
Hamid Pourziaie

The correct selection of the machining parameters is one of the most significant issues to take into consideration in Ultrasonic-assisted Electrical Discharge Machining (US-EDM) and EDM processes. In the present work, a study has been made to develop and extract statistical models to show the relationship between important machining performance data (material removal rate (MRR), tool wear ratio (TWR) and surface roughness Ra) and the input machining parameters (pulse current, and pulse-on time) in the EDM and US-EDM of AISI H13. The models obtained were used to analyze the effects of input parameters on machining performance. In addition, a comparative study was carried out to investigate the effect of ultrasonic vibration of the workpiece on machining performance. The results show that Ultrasonic vibration of the workpiece can significantly reduce the inactive pulses and improves the stability of process. Also US-EDM is effective in attaining a high material removal rate (MRR) in finishing regime in comparison with conventional EDM. The results of Analysis of Variance (ANOVA) indicate that the proposed mathematical models can adequately explain the performance within the limits of the factors being studied.


2011 ◽  
Vol 63-64 ◽  
pp. 719-722
Author(s):  
Jian Ye Guo ◽  
Chao Yu ◽  
Guang Qi Cai

This paper took the grinding force in the heavy load honing as the object to research, it mainly analyzed the influence of the grinding force to the material removal rate. First the mathematical model of grinding force was established from starting with the honing pressure. Then the mathematical model of material removal rate was established according to the relationship between material removal volume and honing pressure. Finally the influence of the honing pressure to the material removal rate was analyzed with the aid of software. The results of this paper have important theoretical significance to optimize the processing technology of heavy load honing and further enhance the machining precision and the honing efficiency.


2007 ◽  
Vol 364-366 ◽  
pp. 733-738
Author(s):  
Feng Jiao ◽  
Bo Zhao ◽  
Chuan Shao Liu ◽  
Xun Sheng Zhu

Aimed at the precision machining characteristics of nano ZTA engineering ceramics external cylindrical components, ultrasonic aided lapping experiments were carried out adopting inhouse developed ultrasonic external cylindrical lapping device with solid abrasive material. To obtain minimum surface roughness with constraint of the material removal rate, response surface methodology (RSM) was adopted to analyze the experimental data, and suitable experiment design was chosen to fit the response surface in this research. Second-order surface response models of surface roughness and material removal rate were developed respectively, and the influence laws of lapping parameters on surface roughness and material removal rate were clarified according to the built models. Finally, parameters optimization of the ultrasonic external cylindrical lapping process for nano ZTA engineering ceramics was realized using surface response methodology.


2009 ◽  
Vol 416 ◽  
pp. 609-613
Author(s):  
Ming Li Zhao ◽  
Bo Zhao ◽  
Yu Qing Wang ◽  
Guo Fu Gao

Relative motion of single abrasive is analyzed for the different applied directions of longitudinal ultrasonic vibration, and its locus is simulated in the present paper. The research results show that the locus in two-dimensional ultrasonic vibration is only similar to that in y-direction, and both are close to sinusoid curves. The width of grooves scratched by abrasive grains y-direction (axial direction of grinding wheel) is two times of the vibration amplitude, and the material removal rate increases remarkably. In case of x-direction (tangential direction of grinding wheel) ultrasonic vibration, abrasive grains with periodic force impact material surface with high frequency vibration, which make material fracture removal easy. Therefore, the high efficiency essence of material removal in two-dimensional ultrasonic grinding is revealed in view of locus. In addition, according to the results of grinding experiments, under same conditions good surface quality can be obtained in two-dimensional ultrasonic grinding and material removal rate in common grinding is the lowest. Consequently it is further proved that the method of two-dimensional ultrasonic vibration grinding is an effective one for ceramic materials.


Sign in / Sign up

Export Citation Format

Share Document