Eight Surfaces of Radiation Heat Transfer Network Model Development

2013 ◽  
Vol 391 ◽  
pp. 191-195 ◽  
Author(s):  
Ummi Kalthum Ibrahim ◽  
Ruzitah Mohd Salleh ◽  
W. Zhou

This paper deals with the numerical solution for radiative heat transfer within a heated six wall surfaces baking oven, baking tin surface and bread surface. The radiation heat transfer model is constructed by adopting a radiation network representation analysis. The analysis applies view factor and radiosity in determining the radiation rates for each surface in the oven. The amount of radiation heat, q and temperature, T variables are equivalent to electric current and voltage, respectively. Finite difference method coupled with Gauss-Seidel iteration was selected to solve the equations involved in the analysis. Even though this method is tedious and intractable for multiple surfaces, but it would seem to be the most accurate and suitable approach for radiation analysis in the enclosure.

2007 ◽  
Vol 352 ◽  
pp. 13-16
Author(s):  
Zoran S. Nikolic ◽  
Masahiro Yoshimura

A finite difference method based on control volume methodology and interface-tracking technique for simulation of rapid solidification accompanied by melt undercooling will be described and applied to analyze the solidification of alumina sample on copper substrate.


Author(s):  
Lucas Peixoto ◽  
Ane Lis Marocki ◽  
Celso Vieira Junior ◽  
Viviana Mariani

2013 ◽  
Vol 284-287 ◽  
pp. 3345-3351
Author(s):  
Chi Chang Wang ◽  
Wu Jung Liao ◽  
Lu Ping Chao

This study used rectangular fins with constant heat transfer coefficient as material to discuss convective and radiative heat transfer, so as to prove that the hybrid spline difference method proposed in this study is an easy to operate method with high accuracy. According to the computational process described in this paper, the hybrid spline difference method is as simple as finite difference method and is easy to use. The complex computational process of traditional spline method can be simplified by using this method, but the numerical accuracy can be increased to second order. Therefore, the high accuracy numerical method of hybrid spline difference method replacing traditional spline method for future heat transfer analyses is expectable.


1985 ◽  
Vol 107 (1) ◽  
pp. 29-34 ◽  
Author(s):  
L. K. Matthews ◽  
R. Viskanta ◽  
F. P. Incropera

An analysis is presented to predict the heat transfer characteristics of a plane layer of a semitransparent, high-temperature, porous material which is irradiated by an intense solar flux. A transient, combined conduction and radiation heat transfer model, which is based on a two-flux approximation for the radiation, is used to predict the temperature distribution and heat transfer in the material. Numerical results have been obtained using thermophysical and radiative properties of zirconia as a typical material. The results show that radiation is an important mode of heat transfer, even when the opacity of the material is large (τL > 100). Radiation is the dominant mode of heat transfer in the front third of the material and comparable to conduction toward the back. The semitransparency and high single scattering albedo of the zirconia combine to produce a maximum temperature in the interior of the material.


2014 ◽  
Vol 35 (2) ◽  
pp. 65-92 ◽  
Author(s):  
Paweł Kuczyński ◽  
Ryszard Białecki

Abstract The paper deals with a solution of radiation heat transfer problems in enclosures filled with nonparticipating medium using ray tracing on hierarchical ortho-Cartesian meshes. The idea behind the approach is that radiative heat transfer problems can be solved on much coarser grids than their counterparts from computational fluid dynamics (CFD). The resulting code is designed as an add-on to OpenFOAM, an open-source CFD program. Ortho-Cartesian mesh involving boundary elements is created based upon CFD mesh. Parametric non-uniform rational basis spline (NURBS) surfaces are used to define boundaries of the enclosure, allowing for dealing with domains of complex shapes. Algorithm for determining random, uniformly distributed locations of rays leaving NURBS surfaces is described. The paper presents results of test cases assuming gray diffusive walls. In the current version of the model the radiation is not absorbed within gases. However, the ultimate aim of the work is to upgrade the functionality of the model, to problems in absorbing, emitting and scattering medium projecting iteratively the results of radiative analysis on CFD mesh and CFD solution on radiative mesh.


Author(s):  
M. H. Saidi ◽  
M. Kargar ◽  
A. Ghafourian

Investigation of radiation heat transfer In vortex engine is an important and new phenomenon in combustion for scientists and combustion researchers. In this research some parts of the combustion chamber wall are insulated using Blanket as a high insulating material. The rate of radiative heat transfer to the chamber wall is calculated using temperature difference between inner and outer surface of chamber. In the experiments this parts are protected from direct contact with hot combustion media using quartz window. The luminous radiative transfer per volume of chamber and also volume of flame in a vortex engine are compared with that in a similar axial flow type engine. A detector sensitive to emission from C2* excited radically is utilized for the measurement of chemiluminescence emission at the centerline of chamber along all axial positions. The filtered photographs of flame are used to compare total C2* emission from flame.


Aerospace ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 16
Author(s):  
Jing Ren ◽  
Xueying Li ◽  
Hongde Jiang

Future power equipment tends to take hydrogen or middle/low heat-value syngas as fuel for low emission. The heat transfer of a film-cooled turbine blade shall be influenced more by radiation. Its characteristic of conjugate heat transfer is studied experimentally and numerically in the paper by considering radiation heat transfer, multicomposition gas, and thermal barrier coating (TBC). The Weighted Sum of Gray Gases Spectral Model and the Discrete Transfer Model are utilized to solve the radiative heat transfer in the multicomposition field, while validated against the experimental data for the studied cases. It is shown that the plate temperature increases significantly when considering the radiation and the temperature gradient of the film-cooled plate becomes less significant. It is also shown that increasing percentage of steam in gas composition results in increased temperature on the film-cooled plate. The normalized temperature of the film-cooled plate decreases about 0.02, as the total percentage of steam in hot gas increases 7%. As for the TBC effect, it can smooth out the temperature distribution and insulate the heat to a greater extent when the radiative heat transfer becomes significant.


Sign in / Sign up

Export Citation Format

Share Document