Optimal Design of Passive Filter Groups Based on Three Kinds of Operation Modes

2013 ◽  
Vol 392 ◽  
pp. 611-617
Author(s):  
Kai Liang Wang ◽  
Jiang Zeng

Parameters of passive filter (PF) group are usually designed according to single operating mode, in general the maximum operation mode. When power system is being operated in other operation mode, it is impossible to meet the requirement of power system in reactive power compensation and harmonic elimination simultaneously when whichever filter group is out of service. For this reason, based on three kinds of typical operation mode, namely the maximum, average and minimum mode, the optimization design of PF group is performed and reasonable parameters are determined to achieve the optimal matching between harmonic elimination and reactive power compensation by the lowest investment cost. The feasibility of the proposed method is verified by simulation results.

2015 ◽  
Vol 9 (1) ◽  
pp. 591-599
Author(s):  
Ma Wenchuan ◽  
Zhitong Li ◽  
Chen Daochang ◽  
Qi Jiaming ◽  
Zhou Qiang ◽  
...  

For resolving the problem that power filter cannot work normally because TCR (thyristor controlled reactor) generates extra third harmonic current under asymmetrical voltage, the paper proposes the estimation method of current capacity that TCR generates extra third harmonic current under asymmetrical voltage. Considering extra third harmonic current under asymmetrical voltage, Optimum method based on genetic algorithm is used to design the parameters of power filter. With reactive power compensation and harmonic suppression project of a steel mill as example, the proposed method is simulated by Matlab. Simulation results show optimized power filter can eliminate extra third harmonic current effects under asymmetrical voltage, meet the requirement of reactive power compensation, reduce harmonics current that load injects into system, and guarantee the power filter safe operation under asymmetrical voltage.


Vestnik MEI ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 11-18
Author(s):  
Nailia Sh. Chemborisova ◽  
◽  
Ivan D. Chernenkov ◽  

The problem of selecting the electric power system control nodes is studied. By performing control of these modes, matters concerned with providing reliable power supply of the required quality to consumers can be settled in the most efficient manner. As an example, a fragment of the electric power system mathematical model used in the Finist mode-setting simulator for a power system dispatch control center operator is considered, which represents a highly branched electrical network consisting of eleven 110 kV nodes, three 220 kV nodes connected with the system, and two generator nodes. A new procedure for selecting the control nodes is proposed, which takes into account a combination of different indicators having different measurement units, dimensions and scales is proposed. These indicators characterize the following properties of power system nodes: the reactive power fraction absorbed at a node, the sensitivity of voltage to reactive load variations, the number of connected power lines, and statistical indicators characterizing the change of voltage at the nodes and reactive power flows for different options of installing the reactive power compensation devices. For combined use of these indicators, they were ranked according to the efficiency of installing reactive power compensation devices in the system. For each indicator, a scale of five ranks (intervals) is set, which determine the preferences (qualitative judgments) of the researcher in evaluating the reactive power compensation devices installation efficiency at the system nodes. The highest rank (5) corresponds to the maximum efficiency, and the lowest rank (1) corresponds to the minimum efficiency. To calculate the individual (integral) priority indicator of installing reactive power compensation devices, the ranks of indicators are added together, and their sum is divided by the product of the number of ranks by the number of the used indicators (features). Based on the calculation results, the rating (location) of each node is determined, and the nodes for installing the reactive power compensation devices are selected according to their effect on ensuring the electric power system operation reliability, active power losses in the network, and voltage regulation. Thus, a new procedure is presented for determining the integral indicators for comprehensively estimating the properties of complex electric power system nodes and selecting the controlled nodes using a system of various indicators. These indicators characterize the studied nodes in terms of the efficiency of installing reactive power compensation devices to reduce active power losses in the network, voltage regulation, and ensuring the electric power system operational reliability. The validity of the results obtained in the study is confirmed by their comparison with the indicators of the balance-conductivity method, which has proven itself in solving problems connected with determining the nodes for controlling electric power system operation modes.


Author(s):  
Jialin Li ◽  
Honggang Ding ◽  
Ye Sun ◽  
Jingming Guo ◽  
Jiapeng Wang ◽  
...  

2018 ◽  
Vol 7 (3.31) ◽  
pp. 36
Author(s):  
Srikanth B. Venkata ◽  
Lakshmi Devi Ai

This paper deals with the identification of instability nodes of IEEE 30 BUS power system to generation removal. Optimal sizing and locations of reactive power compensations are obtained. Firstly one of the generators is assumed to be removed from service and the saddle node bifurcation (SNB) point voltages are evaluated without reactive power compensation. Secondly two generators are assumed to be removed from service and the saddle node point voltage magnitudes are obtained without reactive power compensation. For both cases the study is conducted by placing optimal reactive power compensations at optimal locations using Bacterial Foraging Optimization Algorithm (BFOA).  


2014 ◽  
Vol 536-537 ◽  
pp. 1542-1546
Author(s):  
Xun Gao ◽  
Jie Meng ◽  
Yi Qun Li ◽  
Ying Wang ◽  
Wen Chao Zhang

A phenomenon that the damping ratio will decrease when the power flows from both sides to the primary power grid is summarized and analyzed in the paper. Based on analysis of the damping ratio change of West Inner Mongolia-Shandong oscillation under the sequential operation mode and the hedge operation mode, a three-machine equivalent system is established to study edge to edge (ETE) oscillation mode under hedge operating mode of the power system. The influence of magnitudes and trends of power flow on damping ratio is analyzed, and the reason that why damping ratios decreases when both sides send power to the mid-side power grid is explained.


Author(s):  
Damian O Dike ◽  
Satish M Mahajan

A strategy is presented for the self-tuning of a voltage source converter (VSC) based Flexible AC Transmission Systems (FACTS) according to the prevailing system condition. L-index, which is a power system voltage stability status indicator, and its associated parameters are used to automatically regulate the modulation signal of the VSC. This will lead to a proportionate adjusting of the magnitude of the current injected into, or absorbed from, the interconnected load bus by the FACTS device. This regulating scheme will enhance seamless and optimal reactive power compensation by utilizing the dynamic operational nature of present day distressed power system networks. Results obtained using this method when applied to selected load buses of the IEEE 14 bus system under varying practical scenarios showed its capability to appropriately control FACTS devices operation to accommodate system changing conditions. It is hoped that the outcome of this work will provide efficient tools for the determination of power system status, ensure optimal utilization of the dynamic reactive power compensation devices and reduce system outages.


2013 ◽  
Vol 694-697 ◽  
pp. 846-849
Author(s):  
Jian Yuan Xu ◽  
Wei Fu Qi ◽  
Yun Teng

This paper mainly studies wind power fluctuations how to affect voltage stability after the wind power grid integration, and reactive power compensation equipment on improving effect. In certain parts of the wind farm, for example, firstly, analyzing the wind farm reactive power problems. Then introduce the reactive power compensation equipment that used in the wind farm. Finally, with PSCAD software, making a simulation analysis about the influence on the power grid voltage according to adopting the different reactive power compensation devices or not.


Sign in / Sign up

Export Citation Format

Share Document