The Review of Studies on Formulas for Calculating Wave Breaking Height

2013 ◽  
Vol 392 ◽  
pp. 958-961
Author(s):  
Jia Xuan Yang ◽  
Shou Xian Zhu ◽  
Xun Qiang Li ◽  
Wen Jing Zhang ◽  
Lei Wang

Wave breaking is the most complex and intensified physical process in coastal zone. And as the maximum in this area, the breaking wave height has a major impact on ocean engineering and ship sailing. In this paper, the present calculation methods for breaking height are concluded and divided into two categories: one is directly computing models using deep wave elements; the other is indirectly calculation models based on the surf wave calculation model and the criterion of breaking.

2016 ◽  
Vol 858 ◽  
pp. 354-358
Author(s):  
Tao You ◽  
Li Ping Zhao ◽  
Zheng Xiao ◽  
Lun Chao Huang ◽  
Xiao Rui Han

Within the surf zone which is the region extending from the seaward boundary of wave breaking to the limit of wave uprush, breaking waves are the dominant hydrodynamics acting as the key role for sediment transport and beach profile change. Breaking waves exhibit various patterns, principally depending on the incident wave steepness and the beach slope. Based on the equations of conservation of mass, momentum and energy, a theoretical model for wave transformation in and outside the surf zone was obtained, which is used to calculate the wave shoaling, wave set-up and set down and wave height distributions in and outside the surf zone. The analysis and comparison were made about the breaking point location and the wave height variation caused by the wave breaking and the bottom friction, and about the wave breaking criterion under regular and irregular breaking waves. Flume experiments relating to the regular and irregular breaking wave height distribution across the surf zone were conducted to verify the theoretical model. The agreement is good between the theoretical and experimental results.


2022 ◽  
Vol 10 (1) ◽  
pp. 50
Author(s):  
Miyoung Yun ◽  
Jinah Kim ◽  
Kideok Do

Estimating wave-breaking indexes such as wave height and water depth is essential to understanding the location and scale of the breaking wave. Therefore, numerous wave-flume laboratory experiments have been conducted to develop empirical wave-breaking formulas. However, the nonlinearity between the parameters has not been fully incorporated into the empirical equations. Thus, this study proposes a multilayer neural network utilizing the nonlinear activation function and backpropagation to extract nonlinear relationships. Existing laboratory experiment data for the monochromatic regular wave are used to train the proposed network. Specifically, the bottom slope, deep-water wave height and wave period are plugged in as the input values that simultaneously estimate the breaking-wave height and wave-breaking location. Typical empirical equations employ deep-water wave height and length as input variables to predict the breaking-wave height and water depth. A newly proposed model directly utilizes breaking-wave height and water depth without nondimensionalization. Thus, the applicability can be significantly improved. The estimated wave-breaking index is statistically verified using the bias, root-mean-square errors, and Pearson correlation coefficient. The performance of the proposed model is better than existing breaking-wave-index formulas as well as having robust applicability to laboratory experiment conditions, such as wave condition, bottom slope, and experimental scale.


2011 ◽  
Vol 1 (32) ◽  
pp. 18
Author(s):  
Keisuke Murakami ◽  
Daisuke Maki

INTRODUCION The beach protection facilities are required in some situations to harmonize with coastal environments and utilizations(National Association of Sea Coast,2004). This study investigates some hydraulic functions of proposed multipurpose artificial reef which has an inclined reef crown. The reef is expected to protect beaches against storm waves, and also facilitates the surfing activities under mild wave conditions. The forced wave breaking on the reef sometimes causes a mass transport and wave setup. This study focuses on the following hydraulic characters to clear the efficiencies of proposed artificial reef with inclined crown. 1) Wave energy dissipation by the reef, 2) Generation of suitable wave breakers for surfing, 3) Wave setup behind the reef. HYDRAULIC EXPERIMENT SETUP A series of hydraulic experiments were carried out with using a two-dimensional wave flume. The model scale was assumed 1/30. Three kinds of cross sections were employed as the model of artificial reef (Fig.-1). Both Case-A and Case-B have the inclined crown. The cross section of Case-C, which has a flat crown, is set as a typical cross section of conventional artificial reef. The reef length of Case-A is the same as that of Case-C, and Case-B is double the length of Case-A. Two different submerged depths of crown, hc=2cm and 5cm, were set in the experiments. In Case-A and Case-B, their submerged depth of crown, hc, were defined as the minimum depth at the onshore edge of the crown. The incident wave heights were changed at 1cm intervals from 4cm to 9cm, and the periods were also chanced at 1 sec. intervals from 1 sec. to 2.4 sec. for each wave height. SUMMARY OF RESULTS The energy flux ratio of transmitted waves in Case-B shows similar values in Case-C under the stormy wave conditions in the case of hc=2cm. The longer reef shows favorable characters in dissipating wave energy as well as in maintaining a wider breaker zone on its crown. On the other hand, the transmitted energy flux in Case-A become slightly higher than that in Case-C. The inclined shape of the reef crown closely relates to both the type of wave breakers and the generation of higher order waves. Wave breakers observed in Case-A and Case-B are almost Plunging breaker or Collapsing breaker, and these breakers are suitable for surfing(Walker, et.al.,1972). In Case-C, on the other hand, most incident waves break at the offshore edge of the crown with backwash(Fig.-2). This means that the slope on the reef crown play an important roll in generating suitable breakers for surfing. Type of wave breakers on the inclined reef were summarized by surf similarity parameter(Battjes,1974). Fig.-3 shows the normalized wave setup behind each reef. The wave setup differs depending the reef sections. Case-A and Case-B check the wave setup effectively in comparison with Case-C. This excellent checking effect can be observed in the wide range of incident wave height and wave period. Through a series of hydraulic experiments, it is cleared that the difference of wave setup observed behind the reefs relates to the wave breaker type and wave breaker point on the reefs.


1964 ◽  
Vol 1 (9) ◽  
pp. 12
Author(s):  
Tsao-Yi Chiu ◽  
Per Bruun

This article introduces the longshore current computations based on theories published under the title "Longshore Currents and Longshore Troughs" (Bruun, 1963). Two approaches are used to formulate the longshore current velocities for a beach profile with one bar under the following assumptions: (1) that longshore current is evenly distributed (or a mean can be taken) along the depthj (2) that the solitary wave theory is applicable for waves in the surf zone; (3) that the statistical wave-height distribution for a deep water wave spectrum with a single narrow band of frequencies can be used near the shore, and (4) that the depth over the bar crest, Dcr, equal 0.8Hv/i /o\. Breaking wave height H^Q/^X is designated to be the actual height equal to Hw-j (significant wave height). Diagrams have been constructed for both approaches for beach profiles with one bar, from which longshore current velocities caused by various wave-breaking conditions can be read directly. As for longshore currents along the beach with a multibar system, fifteen diagrams covering a great variety of wave-breaking conditions are provided for obtaining longshore current velocities in different troughs.


2021 ◽  
Vol 9 (2) ◽  
pp. 160
Author(s):  
Changfei Li ◽  
Fuping Gao ◽  
Lijing Yang

Previous studies on wave-induced pore pressure in a porous seabed mainly focused on non-breaking regular waves, e.g., Airy linear waves or Stokes non-linear waves. In this study, breaking-wave induced pore pressure response in a sandy seabed was physically simulated with a large wave flume. The breaking-wave was generated by superimposing a series of longer waves onto the foregoing shorter waves at a specified location. Water surface elevations and the corresponding pore pressure in the process of wave breaking were measured simultaneously at three typical locations, i.e., at the rear, just at, and in front of the wave breaking location. Based on test results, characterization parameters are proposed for the wave surface elevations and the corresponding pore-pressures. Flume observations indicate that the wave height was greatly diminished during wave breaking, which further affected the pore-pressure responses. Moreover, the measured values of the characteristic time parameters for the breaking-wave induced pore-pressure are larger than those for the free surface elevation of breaking-waves. Under the action of incipient-breaking or broken waves, the measured values of the amplitude of transient pore-pressures are generally smaller than the predicted results with the analytical solution by Yamamoto et al. (1978) for non-breaking regular waves with equivalent values of characteristic wave height and wave period.


1976 ◽  
Vol 1 (15) ◽  
pp. 32 ◽  
Author(s):  
Toru Sawaragi ◽  
Koichiro Iwata

By wave breaking, an incident monocromatic wave is transformed to a wave composed of its harmonic frequency waves inside a surf zone. Based on a dimensional consideration, the "-1 power law ", the "-2 power law ", the "-2/3 power law " and the "-1/2 power law " on the wave height spectrum ,H(f), are derived as sorts of equilibrium spectra. These spectra except"-l/2 power law" are shown to agree with experimental data.


1986 ◽  
Vol 1 (20) ◽  
pp. 151 ◽  
Author(s):  
Ming-Chung Lin ◽  
Chi-Tung Wu ◽  
Yen-Chi Lu ◽  
Nai-Kaung Liang

The aim of this research is to investigate quaiitatively the influence of short-crested waves on the scouring around the breakwater through mainly some laboratory studies. At first, we succeed to observe clearly in laboratory some sedimentary bed forms such as troughs, holes, triangle bars and longitudinal bars under short-crested wave actions. Then we elucidate the associstion of their formation mechanism with theory of short-crested waves, also indicate its effect on scouring at the toe of breakwaters. In addition, it is shown that the breaking wave height of short-crested waves is certainly higher than that of twodimensional standing waves. Finally we demonstrate some facts of failure of breakwater caused by short-crested wave breaking basing on some field results.


Author(s):  
Dmitry A. Neganov ◽  
◽  
Victor M. Varshitsky ◽  
Andrey A. Belkin ◽  
◽  
...  

The article contains the comparative results of the experimental and calculated research of the strength of a pipeline with such defects as “metal loss” and “dent with groove”. Two coils with diameter of 820 mm and the thickness of 9 mm of 19G steel were used for full-scale pipe sample production. One of the coils was intentionally damaged by machining, which resulted in “metal loss” defect, the other one was dented (by press machine) and got groove mark (by chisel). The testing of pipe samples was performed by applying static internal pressure to the moment of collapse. The calculation of deterioration pressure was carried out with the use of national and foreign methodical approaches. The calculated values of collapsing pressure for the pipe with loss of metal mainly coincided with the calculation experiment results based on Russian method and ASME B31G. In case of pipe with dent and groove the calculated value of collapsing pressure demonstrated greater coincidence with Russian method and to a lesser extent with API 579/ASME FFS-1. In whole, all calculation methods demonstrate sufficient stability of results, which provides reliable operation of pipelines with defects.


2020 ◽  
Vol 20 (3) ◽  
pp. 951-958
Author(s):  
Wenguang Song ◽  
Qiongqin Jiang

The fluid property parameter calculation affects the accuracy of the interpretation the accuracy, in the interpretation of the liquid production profile. Therefore, it is particularly important to accurately calculate the physical property parameter values, in the establishment of the fluid property parameter expert knowledge base system. The main physical parameters include the following calculation methods of the oil. The oil property parameter conversion formula mainly studies the formulas such as bubble point pressure, dissolved gas-oil ratio, crude oil volume coefficient, crude oil density, crude oil viscosity, and crude oil compression coefficient. Design expert knowledge base system, it is based on the calculation methods of these physical parameters. A computational fluid property parameter model is constructed by training production log sample data. Finally, the interactive and friendly product interpretation software model was developed in 9 wells’ data. The design calculation model can increase the accuracy to achieve 95% of oil fluid property parameter. Accurately calculate fluid property parameter values.


2021 ◽  
Vol 9 (5) ◽  
pp. 520
Author(s):  
Zhenyu Liu ◽  
Zhen Guo ◽  
Yuzhe Dou ◽  
Fanyu Zeng

Most offshore wind turbines are installed in shallow water and exposed to breaking waves. Previous numerical studies focusing on breaking wave forces generally ignored the seabed permeability. In this paper, a numerical model based on Volume-Averaged Reynolds Averaged Navier–Stokes equations (VARANS) is employed to reveal the process of a solitary wave interacting with a rigid pile over a permeable slope. Through applying the Forchheimer saturated drag equation, effects of seabed permeability on fluid motions are simulated. The reliability of the present model is verified by comparisons between experimentally obtained data and the numerical results. Further, 190 cases are simulated and the effects of different parameters on breaking wave forces on the pile are studied systematically. Results indicate that over a permeable seabed, the maximum breaking wave forces can occur not only when waves break just before the pile, but also when a “secondary wave wall” slams against the pile, after wave breaking. With the initial wave height increasing, breaking wave forces will increase, but the growth can decrease as the slope angle and permeability increase. For inclined piles around the wave breaking point, the maximum breaking wave force usually occurs with an inclination angle of α = −22.5° or 0°.


Sign in / Sign up

Export Citation Format

Share Document