scholarly journals Breaking-Wave Induced Transient Pore Pressure in a Sandy Seabed: Flume Modeling and Observations

2021 ◽  
Vol 9 (2) ◽  
pp. 160
Author(s):  
Changfei Li ◽  
Fuping Gao ◽  
Lijing Yang

Previous studies on wave-induced pore pressure in a porous seabed mainly focused on non-breaking regular waves, e.g., Airy linear waves or Stokes non-linear waves. In this study, breaking-wave induced pore pressure response in a sandy seabed was physically simulated with a large wave flume. The breaking-wave was generated by superimposing a series of longer waves onto the foregoing shorter waves at a specified location. Water surface elevations and the corresponding pore pressure in the process of wave breaking were measured simultaneously at three typical locations, i.e., at the rear, just at, and in front of the wave breaking location. Based on test results, characterization parameters are proposed for the wave surface elevations and the corresponding pore-pressures. Flume observations indicate that the wave height was greatly diminished during wave breaking, which further affected the pore-pressure responses. Moreover, the measured values of the characteristic time parameters for the breaking-wave induced pore-pressure are larger than those for the free surface elevation of breaking-waves. Under the action of incipient-breaking or broken waves, the measured values of the amplitude of transient pore-pressures are generally smaller than the predicted results with the analytical solution by Yamamoto et al. (1978) for non-breaking regular waves with equivalent values of characteristic wave height and wave period.

Author(s):  
J R Shahraki ◽  
G A Thomas ◽  
M R Davis

The effect of various centre bow lengths on the motions and wave-induced slamming loads on wave-piercing catamarans is investigated. A 2.5 m hydroelastic segmented model was tested with three different centre bow lengths and towed in regular waves in a towing tank. Measurements were made of the model motions, slam loads and vertical bending moments in the model demi-hulls. The model experiments were carried out for a test condition equivalent to a wave height of 2.68 m and a speed of 20 knots at full scale. Bow accelerations and vertical bending moments due to slamming showed significant changes with the change in centre bow, the longest centre bow having the highest wave-induced loads and accelerations. The increased volume of displaced water which is constrained beneath the bow archways is identified as the reason for this increase in the slamming load. In contrast it was found that the length of centre bow has a relatively small effect on the heave and pitch motions in slamming conditions.


2018 ◽  
Vol Vol 160 (A1) ◽  
Author(s):  
J R Shahraki ◽  
G A Thomas ◽  
M R Davis

The effect of various centre bow lengths on the motions and wave-induced slamming loads on wave-piercing catamarans is investigated. A 2.5 m hydroelastic segmented model was tested with three different centre bow lengths and towed in regular waves in a towing tank. Measurements were made of the model motions, slam loads and vertical bending moments in the model demi-hulls. The model experiments were carried out for a test condition equivalent to a wave height of 2.68 m and a speed of 20 knots at full scale. Bow accelerations and vertical bending moments due to slamming showed significant changes with the change in centre bow, the longest centre bow having the highest wave-induced loads and accelerations. The increased volume of displaced water which is constrained beneath the bow archways is identified as the reason for this increase in the slamming load. In contrast it was found that the length of centre bow has a relatively small effect on the heave and pitch motions in slamming conditions.


2016 ◽  
Vol 858 ◽  
pp. 354-358
Author(s):  
Tao You ◽  
Li Ping Zhao ◽  
Zheng Xiao ◽  
Lun Chao Huang ◽  
Xiao Rui Han

Within the surf zone which is the region extending from the seaward boundary of wave breaking to the limit of wave uprush, breaking waves are the dominant hydrodynamics acting as the key role for sediment transport and beach profile change. Breaking waves exhibit various patterns, principally depending on the incident wave steepness and the beach slope. Based on the equations of conservation of mass, momentum and energy, a theoretical model for wave transformation in and outside the surf zone was obtained, which is used to calculate the wave shoaling, wave set-up and set down and wave height distributions in and outside the surf zone. The analysis and comparison were made about the breaking point location and the wave height variation caused by the wave breaking and the bottom friction, and about the wave breaking criterion under regular and irregular breaking waves. Flume experiments relating to the regular and irregular breaking wave height distribution across the surf zone were conducted to verify the theoretical model. The agreement is good between the theoretical and experimental results.


2021 ◽  
Vol 9 (5) ◽  
pp. 520
Author(s):  
Zhenyu Liu ◽  
Zhen Guo ◽  
Yuzhe Dou ◽  
Fanyu Zeng

Most offshore wind turbines are installed in shallow water and exposed to breaking waves. Previous numerical studies focusing on breaking wave forces generally ignored the seabed permeability. In this paper, a numerical model based on Volume-Averaged Reynolds Averaged Navier–Stokes equations (VARANS) is employed to reveal the process of a solitary wave interacting with a rigid pile over a permeable slope. Through applying the Forchheimer saturated drag equation, effects of seabed permeability on fluid motions are simulated. The reliability of the present model is verified by comparisons between experimentally obtained data and the numerical results. Further, 190 cases are simulated and the effects of different parameters on breaking wave forces on the pile are studied systematically. Results indicate that over a permeable seabed, the maximum breaking wave forces can occur not only when waves break just before the pile, but also when a “secondary wave wall” slams against the pile, after wave breaking. With the initial wave height increasing, breaking wave forces will increase, but the growth can decrease as the slope angle and permeability increase. For inclined piles around the wave breaking point, the maximum breaking wave force usually occurs with an inclination angle of α = −22.5° or 0°.


2019 ◽  
Vol 7 (2) ◽  
pp. 52 ◽  
Author(s):  
Zhen Guo ◽  
Wenjie Zhou ◽  
Congbo Zhu ◽  
Feng Yuan ◽  
Shengjie Rui

Silty sand is a kind of typical marine sediment that is widely distributed in the offshore areas of East China. It has been found that under continuous actions of wave pressure, a mass of fine particles will gradually rise up to the surface of silty sand seabeds, i.e., the phenomenon called wave-induced soil erosion. This is thought to be due to the seepage flow caused by the pore-pressure accumulation within the seabed. In this paper, a kind of three-phase soil model (soil skeleton, pore fluid, and fluidized soil particles) is established to simulate the process of wave-induced soil erosion. In the simulations, the analytical solution for wave-induced pore-pressure accumulation was used, and Darcy flow law, mass conservation, and generation equations were coupled. Then, the time characteristics of wave-induced soil erosion in the seabed were studied, especially for the effects of wave height, wave period, and critical concentration of fluidized particles. It can be concluded that the most significant soil erosion under wave actions appears at the shallow seabed. With the increases of wave height and critical concentration of fluidized particles, the soil erosion rate and erosion degree increase obviously, and there exists a particular wave period that will lead to the most severe and the fastest rate of soil erosion in the seabed.


2018 ◽  
Vol 48 (12) ◽  
pp. 2937-2948 ◽  
Author(s):  
David W. Wang ◽  
Hemantha W. Wijesekera

AbstractIt has been recognized that modulated wave groups trigger wave breaking and generate energy dissipation events on the ocean surface. Quantitative examination of wave-breaking events and associated turbulent kinetic energy (TKE) dissipation rates within a modulated wave group in the open ocean is not a trivial task. To address this challenging topic, a set of laboratory experiments was carried out in an outdoor facility, the Oil and Hazardous Material Simulated Environment Test Tank (203 m long, 20 m wide, 3.5 m deep). TKE dissipation rates at multiple depths were estimated directly while moving the sensor platform at a speed of about 0.53 m s−1 toward incoming wave groups generated by the wave maker. The largest TKE dissipation rates and significant whitecaps were found at or near the center of wave groups where steepening waves approached the geometric limit of waves. The TKE dissipation rate was O(10−2) W kg−1 during wave breaking, which is two to three orders of magnitude larger than before and after wave breaking. The enhanced TKE dissipation rate was limited to a layer of half the wave height in depth. Observations indicate that the impact of wave breaking was not significant at depths deeper than one wave height from the surface. The TKE dissipation rate of breaking waves within wave groups can be parameterized by local wave phase speed with a proportionality breaking strength coefficient dependent on local steepness. The characterization of energy dissipation in wave groups from local wave properties will enable a better determination of near-surface TKE dissipation of breaking waves.


1978 ◽  
Vol 1 (16) ◽  
pp. 32 ◽  
Author(s):  
J.A. Battjes ◽  
J.P.F.M. Janssen

A description is given of a model developed for the prediction of the dissipation of energy in random waves breaking on a beach. The dissipation rate per breaking wave is estimated from that in a bore of corresponding height, while the probability of occurrence of breaking waves is estimated on the basis of a wave height distribution with an upper cut-off which in shallow water is determined mainly by the local depth. A comparison with measurements of wave height decay and set-up, on a plane beach and on a beach with a bar-trough profile, indicates that the model is capable of predicting qualitatively and quantitatively all the main features of the data.


2013 ◽  
Vol 392 ◽  
pp. 958-961
Author(s):  
Jia Xuan Yang ◽  
Shou Xian Zhu ◽  
Xun Qiang Li ◽  
Wen Jing Zhang ◽  
Lei Wang

Wave breaking is the most complex and intensified physical process in coastal zone. And as the maximum in this area, the breaking wave height has a major impact on ocean engineering and ship sailing. In this paper, the present calculation methods for breaking height are concluded and divided into two categories: one is directly computing models using deep wave elements; the other is indirectly calculation models based on the surf wave calculation model and the criterion of breaking.


2007 ◽  
Vol 129 (11) ◽  
pp. 1445-1459 ◽  
Author(s):  
A. Olivieri ◽  
F. Pistani ◽  
R. Wilson ◽  
E. F. Campana ◽  
F. Stern

Experimental data are provided for physical understanding and computational fluid dynamics (CFD) validation for the surface combatant David–Taylor model basin Model 5415 bow and shoulder wave breaking. A photographic study was conducted using 5.72m replica and 3.05m geosim models of Model 5415 over a range of Froude numbers (Fr) to identify Fr and scale effects on wave breaking and choose the best Fr for the local flow measurements, which include near- and far-field means and rms wave elevation and mean velocity under the breaking waves. The larger model and Fr=0.35 were selected due to the large extents of quasisteady plunging bow and spilling shoulder wave breaking. A direct correlation is shown between regions of wave slope larger than 17deg and regions of large rms in wave height variation. Scars characterized by sudden changes in the mean wave height and vortices induced by wave breaking were identified. Complementary CFD solutions fill the gaps in the relatively sparse measurements enabling a more complete description of the bow and shoulder wave breaking and induced vortices and scars. The combined results have important implications regarding the modeling of the bubbly flow around surface ships, especially for bubble sources and entrainment.


2016 ◽  
Author(s):  
Pietro D. Tomaselli ◽  
Erik Damgaard Christensen

Breaking wave-induced loads on offshore structures can be extremely severe. The air entrainment mechanism during the breaking process plays a not well-known role in the exerted forces. This paper present a CFD solver, developed in the Open-FOAM environment, capable of simulating the wave breaking-induced air entrainment. Firstly the model was validated against a bubble column flow. Then it was employed to compute the inline force exerted by a spilling breaking wave on a vertical cylinder in a 3D domain at a laboratory scale. Results showed that the entrained bubbles affected the magnitude of the force partially. Further analyses on the interaction of the bubble plume with the flow around the cylinder are needed.


Sign in / Sign up

Export Citation Format

Share Document