Quantitative Analysis of Soft Soil Microstructure in Unloading Levels

2013 ◽  
Vol 401-403 ◽  
pp. 1529-1533 ◽  
Author(s):  
Qi Zhi Hu ◽  
Jing Xia Wang ◽  
Gao Liang Tao

Quantitative analysis of soft soil microstructure in unloading levels are made by using scanning electron microscope (SEM) images, IPP and PS of image technology ,which includes image segmentation, pore size measuring and counting, three dimensional simulation of soft soil microstructure, etc. The results indicate that, with the increase of unloading grade, pore number and area of big aperture are in a sharp increase, the corresponding porosity also in ascension, so the deformation of the soil is mainly due to the change of pore; compared with the apparent 3d images of soil under the transverse profile in unloading levels. The results also indicate that, with the increase of unloading grade, pore area of cross section are in a increase.

Author(s):  
John C. Russ

Three-dimensional (3D) images consisting of arrays of voxels can now be routinely obtained from several different types of microscopes. These include both the transmission and emission modes of the confocal scanning laser microscope (but not its most common reflection mode), the secondary ion mass spectrometer, and computed tomography using electrons, X-rays or other signals. Compared to the traditional use of serial sectioning (which includes sequential polishing of hard materials), these newer techniques eliminate difficulties of alignment of slices, and maintain uniform resolution in the depth direction. However, the resolution in the z-direction may be different from that within each image plane, which makes the voxels non-cubic and creates some difficulties for subsequent analysis.


Author(s):  
Tong Wensheng ◽  
Lu Lianhuang ◽  
Zhang Zhijun

This is a combined study of two diffirent branches, photogrammetry and morphology of blood cells. The three dimensional quantitative analysis of erythrocytes using SEMP technique, electron computation technique and photogrammetry theory has made it possible to push the study of mophology of blood cells from LM, TEM, SEM to a higher stage, that of SEM P. A new path has been broken for deeply study of morphology of blood cells.In medical view, the abnormality of the quality and quantity of erythrocytes is one of the important changes of blood disease. It shows the abnormal blood—making function of the human body. Therefore, the study of the change of shape on erythrocytes is the indispensable and important basis of reference in the clinical diagnosis and research of blood disease.The erythrocytes of one normal person, three PNH Patients and one AA patient were used in this experiment. This research determines the following items: Height;Length of two axes (long and short), ratio; Crevice in depth and width of cell membrane; Circumference of erythrocytes; Isoline map of erythrocytes; Section map of erythrocytes.


2008 ◽  
Vol 128 (2) ◽  
pp. 459-466 ◽  
Author(s):  
Yoshitaka Inui ◽  
Tadashi Tanaka ◽  
Tomoyoshi Kanno

2009 ◽  
Vol 19 (1) ◽  
pp. 75-90 ◽  
Author(s):  
Hong-Bing Xiong ◽  
Jian-Zhong Lin ◽  
Ze-Fei Zhu

Sign in / Sign up

Export Citation Format

Share Document