Simulation Research on Hydraulic Brake System of Low-Floor Light-Rail Vehicle

2013 ◽  
Vol 404 ◽  
pp. 292-295
Author(s):  
Xiang Jun Zhang ◽  
Wen Qing Zhu

The paper discussed the working principle of the hydraulic brake system, and built a model in the simulation by using AMESim to analyze performance of this system. The paper also established a test bench of hydraulic brake system, and the test result coincided with the consequence of simulation, thus to prove the simulation model and method reasonable. This simulation can shorten design cycle of hydraulic brake system apparently, and it contributes a good method to assistant brake system design.

2012 ◽  
Vol 590 ◽  
pp. 441-445
Author(s):  
Qian Zhao ◽  
Jia Jun Duan ◽  
Cheng Wang

At present, the ABS braking system has been widely used in vehicle brake system, has become the important mechanism of automobile brake performance. This paper use the advantage of AMESim software for hydraulic system modeling, and build up the the model of ABS for the automobile brake system according to ABS system working principle, Simulation of automobile ABS hydraulic brake system work process, through the relevant parameter settings, compare and analysis the impacts made by some elements of the whole ABS system, finally make the foundations for the brake system for further optimization and improvement.


2013 ◽  
Vol 427-429 ◽  
pp. 1342-1345
Author(s):  
Yu Chun Pei

This paper introduces the braking system scheme of low floor light rail vehicle, applying the regenerative braking and magnetic track brake, realizes service braking, emergency braking, parking brake and holding brake, also adjusts the braking force according to the load change.


2021 ◽  
Vol 1948 (1) ◽  
pp. 012120
Author(s):  
BuDu Xu ◽  
Xuan Zhang ◽  
ShiXi Zhang ◽  
QingXuan Li ◽  
XiaoYu Zhu

Author(s):  
Ling-Kun Chen ◽  
Peng Liu ◽  
Li-Ming Zhu ◽  
Jing-Bo Ding ◽  
Yu-Lin Feng ◽  
...  

Near-fault (NF) earthquakes cause severe bridge damage, particularly urban bridges subjected to light rail transit (LRT), which could affect the safety of the light rail transit vehicle (“light rail vehicle” or “LRV” for short). Now when a variety of studies on the fault fracture effect on the working protection of LRVs are available for the study of cars subjected to far-reaching soil motion (FFGMs), further examination is appropriate. For the first time, this paper introduced the LRV derailment mechanism caused by pulse-type near-fault ground motions (NFGMs), suggesting the concept of pulse derailment. The effects of near-fault ground motions (NFGMs) are included in an available numerical process developed for the LRV analysis of the VBI system. A simplified iterative algorithm is proposed to assess the stability and nonlinear seismic response of an LRV-reinforced concrete (RC) viaduct (LRVBRCV) system to a long-period NFGMs using the dynamic substructure method (DSM). Furthermore, a computer simulation software was developed to compute the nonlinear seismic responses of the VBI system to pulse-type NFGMs, non-pulse-type NFGMs, and FFGMs named Dynamic Interaction Analysis for Light-Rail-Vehicle Bridge System (DIALRVBS). The nonlinear bridge seismic reaction determines the impact of pulses on lateral peak earth acceleration (Ap) and lateral peak land (Vp) ratios. The analysis results quantify the effects of pulse-type NFGMs seismic responses on the LRV operations' safety. In contrast with the pulse-type non-pulse NFGMs and FFGMs, this article's research shows that pulse-type NFGM derail trains primarily via the transverse velocity pulse effect. Hence, this study's results and the proposed method can improve the LRT bridges' seismic designs.


2014 ◽  
Vol 904 ◽  
pp. 292-295 ◽  
Author(s):  
Jian Zhao ◽  
Yi Ji Xu

Field test of particle impact drilling (PID) technology was firstly carried out in deep well and hard formation in Sichuan province china on Oct. 2013. The test formation was named Xu Jiahe, which was very difficult to penetration. Field test result shows that the ROP (rate of penetration) was nearly doubled by this technology. It indicates that there is a profound application prospect of particle impact drilling, especially for hard rock formation. In this paper, the equipment and working principle was analyzed. The experiment and simulation results showed that the rock breaking efficiency was highly increased by this technology. The details of this field test were presented too in this paper that proved the sound effect of PID.


Author(s):  
Quan Gu ◽  
Jinghao Pan ◽  
Yongdou Liu

Consistent tangent stiffness plays a crucial role in delivering a quadratic rate of convergence when using Newton’s method in solving nonlinear equations of motion. In this paper, consistent tangent stiffness is derived for a three-dimensional (3D) wheel–rail interaction element (WRI element for short) originally developed by the authors and co-workers. The algorithm has been implemented in finite element (FE) software framework (OpenSees in this paper) and proven to be effective. Application examples of wheelset and light rail vehicle are provided to validate the consistent tangent stiffness. The quadratic convergence rate is verified. The speeds of calculation are compared between the use of consistent tangent stiffness and the tangent by perturbation method. The results demonstrate the improved computational efficiency of WRI element when consistent tangent stiffness is used.


2011 ◽  
Vol 305 ◽  
pp. 416-422
Author(s):  
Peng Qi Zhang ◽  
Qing Lin He ◽  
Yin Yan Wang

The paper introduces the working principle of the sequential turbo-charging (STC) system of multi-turbocharger. To improve low-load performance and operating economy of the 234V12 diesel engine, a STC system of multi-turbocharger for the diesel engine was designed. Theoretical calculation and experimental research was done on this improved marine diesel engine. Then, a 3-phase STC system is presented by analyzing and comparing the test result and the switching boundary of this system is confirmed. The test results show that the low-load performance is improved obviously by use of multi-turbocharger STC system.


1977 ◽  
Author(s):  
John M. Cord ◽  
Peter R. Norton

2017 ◽  
Author(s):  
Xiangkun He ◽  
Xuewu Ji ◽  
Kaiming Yang ◽  
Yulong Liu ◽  
Jian WU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document