Finite Element Analysis of Holes on the Metal Lamp Pole

2013 ◽  
Vol 405-408 ◽  
pp. 713-716
Author(s):  
Qian Zhao ◽  
Jin Sen Wang ◽  
Su Min Zheng

Metal lamp pole is widely used in road lamp. The structure of the metal lamp pole is more and more complex. It needs to open holes on the metal lamp pole. To determine bearing capacity and safety properties of the lamp pole after opening hole, this paper used ABAQUS software to make finite element analysis of the metal lamp pole and accurately got the deformation and stress of metal lamp pole. By means of comparing the stress situation of the metal lamp pole with and without holes, it summaries up the influence rules of holes on the mechanical behavior of metal lamp pole. There is an obvious stress concentration phenomenon around holes and the influence degree of different holes location of stress concentration is also different. Through finite element simulation analysis, it meets the project safety and provides reference value for optimization design of lamp pole.

2013 ◽  
Vol 710 ◽  
pp. 243-246
Author(s):  
Xian Hong Yang

The use of Pro/E and their respective advantages ANSYS software product design and engineering analysis to solve the case, first of all in the Pro/E, the completion of three-dimensional helical gear design, and then in the Pro/MECHANICA completed finite element model of helical gear, and then into ANSYS for finite element analysis of bevel gear calculation and simulation, finite element analysis of the final results of optimization design model is presented recommendations for improvement. The product design and engineering analysis method has some reference value in engineering design.


2014 ◽  
Vol 602-605 ◽  
pp. 349-352
Author(s):  
Jie Wu ◽  
Jia Quan Wang ◽  
Dong Zheng Wang

The composite slurry valve is applied widely in the high pressure mud shipping tube because of maintenance easily and disassembly. Composite slurry valve plays a vital role, which combined application is more; ram is one of the important components of composite slurry valve. But deflection is easy to occur in the seal plate of the composite slurry valve, so as to make sealing failure. This article mainly aims at the seal plate has carried on the design and analysis, finite element modeling, and study the corresponding constraints, in the process of loading method. It is very important to improve structural design and performance of entity modeling and finite element analysis of the gate valve. Aiming at present situation and development trends of CAD and CAE technology of oil field gate valve, using Sold Works and ANSYS software seamless link, three dimensions modeling to the gate valve, virtual assemble and finite element analysis were carried out successfully. According to the analysis result, the improvement scheme based on the theory analysis was put forward, thus offering the theoretical basis for the whole structural optimization design and performance improvement of the gate valve.


2011 ◽  
Vol 121-126 ◽  
pp. 3386-3390
Author(s):  
Gui Hua Han ◽  
Bing Wei Gao ◽  
Yun Fei Wang ◽  
Gui Tao Sun ◽  
Di Wu ◽  
...  

In order to improve the dynamic characteristics of crossbeam of heavy NC gantry moving boring & milling machine, the ribbed slab structure of beam were analyzed and optimized with the finite element analysis software, and the comprehensive optimization method of the number, size and layout of ribbed slab were putted forward based on the classification of ribbed slab structure. According to the result of the finite element analysis, the internal type and horizontal spacing of ribbed slab are optimized to get the best number, spacing, thickness and height of ribbed slab; Under the required intensity, stiffness and stability conditions materials are distributed reasonably to reduce beam weight which make little deformation and the uniform stress distribution. The comprehensive optimization method study has reference value for ribbed slab structure design.


2012 ◽  
Vol 490-495 ◽  
pp. 2785-2789
Author(s):  
Dong Sun ◽  
Xu Dong Yang

The milling planer bed is one of the most important foundational parts for the entire machine, sufficient stiffness is required. The posterior segment of a certain milling planer bed is regarded as the optimization object in this paper. Three-dimensional modeling method is used to calculate the exact weight of the bed and then finite element analysis is used to research the static and dynamic characteristics before and after weight-reduction. The weak link of the bed is found out and a improvement scheme is put forward ensuring lower production costs under the premise of sufficient rigidity.


2014 ◽  
Vol 945-949 ◽  
pp. 1135-1138
Author(s):  
Tao Liang ◽  
Chun Ling Meng ◽  
Yang Li ◽  
Xiu Hua Zhao

The finite element analysis of large air cooling tower was carried out using ABAQUS. On the basis of strength above,8 types of the axial force are analyzed and summarized, find valuable rules, and put forward the further optimization design. So that it can satisfy the strength and stability of air cooling tower, the structure is more reasonable, reduce weight, reduce the cost.


2012 ◽  
Vol 538-541 ◽  
pp. 3253-3258 ◽  
Author(s):  
Jun Jian Xiao

According to the results of finite element analysis (FEA), when the diameter of opening of the flat cover is no more than 0.5D (d≤0.5D), there is obvious stress concentration at the edge of opening, but only existed within the region of 2d. Increasing the thickness of flat covers could not relieve the stress concentration at the edge of opening. It is recommended that reinforcing element being installed within the region of 2d should be used. When the diameter of openings is larger than 0.5D (d>0.5D), conical or round angle transitions could be employed at connecting location, with which the edge stress decreased remarkably. However, the primary stress plus the secondary stress would be valued by 3[σ].


2007 ◽  
Vol 353-358 ◽  
pp. 1995-1998
Author(s):  
Byeong Choon Goo

The purpose of this paper is to develop an estimation formula of stress concentration factors of butt-welded components under tensile loading. To investigate the influence of weld bead profiles on stress concentration factors of double V groove butt-welded joints, butt-welded specimens were made by CO2 gas metal arc welding. And the three main parameters, the toe radius, flank angle and bead height were measured by a profile measuring equipment. By using the measured data, the influence of three parameters on the stress concentration factors was investigated by a finite element analysis. It is shown that the three parameters have similar effects on the stress concentration factors. According to the simulation results, a formula to estimate the stress concentration factors of butt-weld welded structures was proposed and the estimated concentration factors from the formula were compared with the results obtained by the finite element analysis. The two results are in a good agreement.


Author(s):  
Edric Wee Ming Wong ◽  
Choo Jun Tan ◽  
Jenn Hwai Leong ◽  
Syauqina Akmar Mohd-Shafri ◽  
Dahaman Ishak ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bin Zheng ◽  
Yi Cai ◽  
Kelun Tang

Purpose The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine. Design/methodology/approach The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization. Findings After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased. Originality/value This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.


Sign in / Sign up

Export Citation Format

Share Document