Radiated Noise Source Localization of Hydraulic Excavator Based on Wavelet Packet Analysis

2013 ◽  
Vol 415 ◽  
pp. 409-413
Author(s):  
Qing Qing Zhang ◽  
Yi Qi Zhou ◽  
Liang Liang Fan

Collect a hydraulic excavators radiated noise ten meters away under set conditions, and also the relevant noises near the excavator. Analyze noise signals with wavelet packet to get the main band of energy distribution. Then calculate the two signals correlation coefficient, which identifies the muffler exhaust noise and inlet noise as the main source for right rear radiated noise.

2013 ◽  
Vol 321-324 ◽  
pp. 1284-1289
Author(s):  
Dong Tao Li ◽  
Li Xin Xu ◽  
Yuan Yuan Sun ◽  
Qiu Rui Jia ◽  
Jing Long Yan

It is conducive to reducedamage of blasting vibration to realize energy distribution and attenuation lawof single-hole blasting vibration signal. With the measured single-holeblasting vibration velocity curves, used wavelet packet analysis technologywith high-resolution character, the law of energy distribution of single-holeblasting vibration signals in different frequency bands, and the effect ofblasting source and distance from the source on single-hole blasting vibrationsignal energy distribution were analysised. The results show that the energy ofsingle-hole blasting vibration signals attenuation very quickly in thefrequency domain concentration distribution in 0~100Hz; and distance from thesource has significant influence on energy distribution in the frequencydomain; The energy is mainly distributed in the low frequency band whendistance from the source is larger, which has guiding significance inmitigation of blast-induced vibrations.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Haiyan Wang ◽  
Ji Ma ◽  
Gongda Wang ◽  
Han Gao ◽  
Guangyong Cui ◽  
...  

The occurrence of rockburst dynamic disaster is a process from the microdamage to macroinstability of coal and rock mass, which is accompanied by the acoustic emission (AE) phenomenon. The application of AE technology can reliably help to judge and predict the damage evolution of coal and rock mass, as the most basic problem in the study of AE is the location of the AE source. In this work, the AE source localization experiments of rod-shaped rocks and plate-shaped rocks were carried out. The influence of calibration wave velocity of linear and plane positioning on the location of the AE source was studied. The feasibility analysis of the AE source localization of a plate-shaped rock with different sensor arrays was conducted. The result of the plane location was optimized by wavelet packet analysis combined with cross correlations. The results show that the homogeneity of marble members in this work is suitable, and the positioning error is least affected by wave velocity. In the positioning of the plane AE source, it is suitable to choose a diamond sensor array. The positioning source should be located near the center of the array network. The positioning effect of the rod-shaped rock is generally better than that of the plate-shaped rock. In the actual source positioning work, it should be simplified as much as possible as a linear positioning problem. A more accurate AE signal delay could be obtained using wavelet packet analysis combined with cross-correlation technology, which can greatly reduce the positioning error caused by the accuracy of time difference. The purpose of this work is to provide a basis for determining a more accurate location of the fracture source of rock materials, which is of great significance and application value on the prediction and control of rockburst dynamic disaster.


2019 ◽  
Vol 16 (3) ◽  
pp. 202-213 ◽  
Author(s):  
G. G. Buriy ◽  
V. S. Shherbakov ◽  
S. B. Skobelev ◽  
V. F. Kovalevskiy

Introduction.Construction of engineering structures is impossible without building and road machines. The large volume of financing is allocated for such machines’ purchase. The main ways of reducing costs of the equipment consist in more rational operation of the equipment and also in decrease of equipment’s cost by constructive changes. The paper demonstrates the new design of the single-bucket hydraulic excavator with smaller cost.Materials and methods.The main ways of cost reduction for construction machines are more rational operation and depreciation of a design with the required characteristics’ maintaining. The paper describes constructive changes of the working equipment of the single-bucket hydraulic excavator, which allow decreasing the production costs.Results.The authors describe the new bucket design of the single-bucket hydraulic excavator. Moreover, the authors carry out the analysis of the existing buckets’ design. The paper also illustrates the functioning on bucket forces while digging process. The authors describe the solutions of the problem for productivity increase of the single-bucket in hydraulic excavators. In addition, the authors make the scheme of the bucket loading while digging process. Such scheme helps to reduce resistance forces of digging.Discussion and conclusions.As a result, the paper presents the design of the working equipment of the hydraulic excavator’s single-bucket, which allows reducing resistance forces of digging. Such results would help to establish buckets of bigger capacity and would lead to the productivity increase.


Author(s):  
Kaiyang Zhou ◽  
Dong Lei ◽  
Jintao He ◽  
Pei Zhang ◽  
Pengxiang Bai ◽  
...  

2018 ◽  
Vol 51 (5-6) ◽  
pp. 138-149 ◽  
Author(s):  
Hüseyin Göksu

Estimation of vehicle speed by analysis of drive-by noise is a known technique. The methods used in this kind of practice generally estimate the velocity of the vehicle with respect to the microphone(s), so they rely on the relative motion of the vehicle to the microphone(s). There are also other methods that do not rely on this technique. For example, recent research has shown that there is a statistical correlation between vehicle speed and drive-by noise emissions spectra. This does not rely on the relative motion of the vehicle with respect to the microphone(s) so it inspires us to consider the possibility of predicting velocity of the vehicle using an on-board microphone. This has the potential for the development of a new kind of speed sensor. For this purpose we record sound signal from a vehicle under speed variation using an on-board microphone. Sound emissions from a vehicle are very complex, which is from the engine, the exhaust, the air conditioner, other mechanical parts, tires, and air resistance. These emissions carry both stationary and non-stationary information. We propose to make the analysis by wavelet packet analysis, rather than traditional time or frequency domain methods. Wavelet packet analysis, by providing arbitrary time-frequency resolution, enables analyzing signals of stationary and non-stationary nature. It has better time representation than Fourier analysis and better high-frequency resolution than Wavelet analysis. Subsignals from the wavelet packet analysis are analyzed further by Norm Entropy, Log Energy Entropy, and Energy. These features are evaluated by feeding them into a multilayer perceptron. Norm entropy achieves the best prediction with 97.89% average accuracy with 1.11 km/h mean absolute error which corresponds to 2.11% relative error. Time sensitivity is ±0.453 s and is open to improvement by varying the window width. The results indicate that, with further tests at other speed ranges, with other vehicles and under dynamic conditions, this method can be extended to the design of a new kind of vehicle speed sensor.


Sign in / Sign up

Export Citation Format

Share Document