Welding Technology Research for the Train Bogie

2013 ◽  
Vol 423-426 ◽  
pp. 784-787
Author(s):  
Gang Wang ◽  
Zhi Gang Chen

Train bogie weld joint requirements with well toughness, high fatigue resistance and high resistance to overload. This article analied the weldability of SMA490BW steel, Combining with the characteristics of train bogie structure, a welding process scheme which had been used in practical productionwas worked out . Process testing and assessment results showed the process can obtain high quality welded joint.

Author(s):  
S.S. Volkov ◽  
A.L. Remizov ◽  
A.S. Pankratov

This paper presents a mechanism of formation of a hard-to-weld polycarbonate joint by ultrasonic welding. The method utilizes internal and external friction occurring in the welded joint area on abutting surfaces due to shear vibrations of the end of the upper part relative to the lower part. A layer of the heated welded material is formed, localized by thickness, in which predominant absorption of the ultrasonic vibrations occurs, which allows one to obtain high-quality and durable welded joints without significant deformation due to the concentration of thermal energy in the welding zone. The effect of independent welding pressure on the strength of the welded joint of polycarbonate is considered. A new method of ultrasonic welding under the conditions of independent pressure is proposed. The method consists of dividing the static welding pressure into two components: the pressure of the acoustic contact in the zone of contact of the waveguide with the product, and the welding pressure that compresses the welded products, with the latter component being lower than the former. In order to obtain high-quality welded joints made of polycarbonate and to prevent displacement of the welded edges during the welding process relative to each other, a special preparation of the welded edges is developed, which allows one part to be moved vertically relative to the other during the welding process. It is established that the quality of welding depends on the speed of movement and the angle of cutting the edges.


2013 ◽  
Vol 333-335 ◽  
pp. 1836-1840
Author(s):  
De Fen Zhang ◽  
Jin Wang ◽  
Zheng Tao Jiang ◽  
Xiong Shi ◽  
Zeng Zhen Li ◽  
...  

Considering the mechanical properties of X70 pipeline steel after repeated welding heat cycles, preheating and interpass temperature controlling are often adopted in the welding technology, which widely increase the welding construction time and lower the construction efficiency, thus improve the construction cost of pipelines. According to the present welding process of X70 pipeline steel, non-preheating welding technology was proposed in this paper. The experiment results show that the properties of the weld joint of X70 pipeline steel with non-preheating achieves the requirement of specified standard. Furthermore, this method simplifies the welding construction processes and improves the construction efficiency. Key Words:X70 Steel; Non-Preheating; Welding Technology


Author(s):  
Qian Zhang ◽  
Bao-Zhu Zhang ◽  
Yun Luo ◽  
Gang Yang ◽  
Hong-xiang Zheng

Abstract Capacitor discharge (CD) stud welding is a common and fast connection technology. This paper presents an experimental and simulation study of the stud weld joint of copper stud and carbon plate. An optimized stud welding process was proposed based on microstructure, microhardness and residual stresses of CD stud welded joint. The results show that a narrow weld seam with widmanstaten structure were formed because of quickly cooling. For the longer stud extension length, the width of weld zone becomes wider and the microstructure becomes more uniform. As the increase of welding voltage and stud extension length, the microhardness increases then decreases. However, the residual stresses are increased with welding voltage increases, while they are decreased with the increases of stud extension length. The optimized welding voltage and stud extension length should be designed to 90 V and 5 mm, respectively. This study will provide a great significance to the stud welding on site.


Author(s):  
Fausto Fusari ◽  
Paolo Marangoni ◽  
Michele Musti ◽  
Stefano Alberini

The standard practice recommended for high pressure vessels, having heavy walls, requires the implementation of weld joint preparation with narrow gap technique; this generally calls for a ‘two beads per layer’ sequence alongside the use of the submerged arc welding process. This process provides a high quality and uniformed weld joint whilst also reducing the residual stresses after welding. In refinery equipment that are subjected to high pressures and are exposed to hydrogen environment, high strength materials such as 2 1/4 Cr 1 Mo 1/4 V are commonly used. A recent study conducted on this material, and the process of submerged arc welding with narrow gap technique ‘two beads per layer,’ had identified a potential issue in complying with ASME Code specified creep resistance properties. In another setting, with regards to the properties of toughness in weld joints, other possible inconsistencies, in the narrow gap weld joint, between the weld centerline and center bead, were found. In order to overcome the deficiencies stated above, an innovative welding technology is presented in this paper which is based on the preparation of a narrower groove than the commonly used narrow gap technique. Such groove has been designed to implement the ‘single bead per layer’ approach. This paper illustrates that the use of this new technique results in improved quality of weld seams as applied in heavy wall high pressure vessels used in creep regime. The welding process considered is that of tandem submerged arc welding with two wires. The mechanical characteristics and results obtained by comparing the two techniques ‘two beads per layer’, and the new innovative one ‘single bead per layer’ will be evidenced and discussed.


2020 ◽  
Vol 170 ◽  
pp. 02004
Author(s):  
Yashwant Chapke ◽  
Dinesh Kamble ◽  
Saoud Md. Salim Shaikh

Friction welding process is a forging welding process in which work piece are joined due to heat produced by friction between two joining surfaces and upset pressure is applied by non-rotating work piece. Joining of aluminum alloy with dissimilar material is important research area to focus on as maximum aircraft structures havexx Aluminum alloy frame and aerospace designers familiar with Aluminum alloy and its design considerations. After comparison of mechanical properties and application of light weight alloys aluminum alloys, tungsten, stainless steel and copper, copper selected as dissimilar material to join with Aluminum alloy AA6063. AA 6063 also known as architectural alloy selected based upon its properties. This dissimilar joint of AA6063 and Copper has application in electrical conductors as copper is good electrical conductivity and used in maximum electrical conductors. In this research work AA6063 joined with Copper successfully using Rotary Friction Welding process. Through process study effective process parameters like Friction Pressure, Upset Pressure, Spindle Speed, and Friction Time identified and their effect on weld joint strength were studied.Testing for measuring UTS of friction welded joint conducted. Using DOE tool optimized set process parameters for friction welding identified and their effect on weld joint strength studied experimentally. Maximum UTS of 222.787 MPa for Friction welded joint achieved, bend test also performed on friction welded samples.


2012 ◽  
Vol 201-202 ◽  
pp. 1135-1138
Author(s):  
Hong Wei Chen ◽  
Rong Jie Wang

In view of the fracturing occurred at the welded joint of the belt conveyor roller while being in use in a coal mine of Fujian Province, the paper analyses the roller’s structure and stress in the basis of the transmission principle. It explores the reasons of the fracturing problem, and then proposes method to improve the roller’s welding technology. These are the cause of the roller fracturing,which the tension of the belt is great, and the roller itself is not strong enough, and welding process of steel plate is poor, and welding quality is not high. Use CO2 and Ar mixed gas shielded arc welding to do backing weld, then use the welding method of automatic submerged arc welding. Finally the tempering to the welded joint part with the track-type far-infrared heater eliminate the welding residual stress. By actual use, it’s proved that the Welding Process Improvement is feasible, reasonable, reliable and practical.


Author(s):  
A. Blouin ◽  
S. Chapuliot ◽  
S. Marie ◽  
J. M. Bergheau ◽  
C. Niclaeys

One important part of the integrity demonstration of large ferritic components is based on the demonstration that they could never undergo brittle fracture. Connections between a ferritic component and an austenitic piping (Dissimilar Metal Weld — DMW) have to respect these rules, in particular the Heat Affected Zone (HAZ) created by the welding process and which encounters a brittle-to-ductile transition. Within that frame, the case considered in this article is a Ni base alloy narrow gap weld joint between a ferritic pipe (A533 steel) and an austenitic pipe (316L stainless steel). The aim of the present study is to show that in the same loading conditions, the weld joint is less sensitive to the brittle fracture than the surrounding ferritic part of the component. That is to say that the demonstration should be focused on the ferritic base metal which is the weakest material. The bases of this study rely on a stress-based criterion developed by Chapuliot et al., using a threshold stress (σth) below which the cleavage cannot occur. This threshold stress can be used to define the brittle crack occurrence probability, which means it is possible to determine the highest loading conditions without any brittle fracture risk.


2011 ◽  
Vol 189-193 ◽  
pp. 3266-3269 ◽  
Author(s):  
Yu Hua Chen ◽  
Peng Wei ◽  
Quan Ni ◽  
Li Ming Ke

Titanium alloy TC1 and Aluminum alloy LF6 were jointed by friction stir welding (FSW), and the influence of process parameters on formation of weld surface, cross-section morphology and tensile strength were studied. The results show that, Titanium and Aluminum dissimilar alloy is difficult to be joined by FSW, and some defects such as cracks and grooves are easy to occur. When the rotational speed of stir head(n) is 750r/min and 950r/min, the welding speed(v) is 118mm/min or 150mm/min, a good formation of weld surface can be obtained, but the bonding of titanium/aluminum interface in the cross-section of weld joint is bad when n is 750r/min which results in a low strength joint. When n is 950r/min and v is 118mm/min,the strength of the FSW joint of Titanium/Aluminum dissimilar materials is 131MPa which is the highest.


Sign in / Sign up

Export Citation Format

Share Document