Four Parallel Channels Radix-4 FFT with Single Floating-Point Butterfly

2013 ◽  
Vol 427-429 ◽  
pp. 708-711 ◽  
Author(s):  
Ji Yang Yu ◽  
Dan Huang ◽  
Xin Li ◽  
Ke Xu ◽  
Li Ming Guo ◽  
...  

An efficient design method of four parallel channels in-order FFT with single floating-point butterfly is proposed, to reduce the resource consumption and improve the real-time calculation ability. The radix-4 FFT is deduced to calculate the access address for four channel data parallel. The hardware architecture of the proposed FFT is presented, and the single precision floating-point adder and multiplier are also depicted. The proposed architecture of a four channels 1024 points radix-4 FFT with single butterfly is implemented in FPGA, and the performance is compared with previous literatures and some EDA corporations IP cores, which shows the correctness and effectiveness of the proposed method.

2018 ◽  
Vol 7 (2.20) ◽  
pp. 14
Author(s):  
B Srikanth ◽  
M Siva Kumar ◽  
K Hari Kishore

In this paper, the single precision float point multiplication is performed using the Schonhage Strassen Algorithm. There are several types of floating point multiplications like Karatsubha and Toom cook. The Schonhage Strassen algorithm is conventionally a fixed point integer multiplication algorithm. The main advantage of the Schonhage Strassen multiplication is that, the multiplication of integer values greater than 5 digits ranging from 2215 to 2217 bit values proves to be efficient. The validation of the proposed floating point multiplication is done using FPGA real time implementation. The analysis of parameters like area and power are evaluated.  


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 420
Author(s):  
Phong B. Dao

Multiagent control system (MACS) has become a promising solution for solving complex control problems. Using the advantages of MACS-based design approaches, a novel solution for advanced control of mechatronic systems has been developed in this paper. The study has aimed at integrating learning control into MACS. Specifically, learning feedforward control (LFFC) is implemented as a pattern for incorporation in MACS. The major novelty of this work is that the feedback control part is realized in a real-time periodic MACS, while the LFFC algorithm is done on-line, asynchronously, and in a separate non-real-time aperiodic MACS. As a result, a MACS-based LFFC design method has been developed. A second-order B-spline neural network (BSN) is used as a function approximator for LFFC whose input-output mapping can be adapted during control and is intended to become equal to the inverse model of the plant. To provide real-time features for the MACS-based LFFC system, the open robot control software (OROCOS) has been employed as development and runtime environment. A case study using a simulated linear motor in the presence of nonlinear cogging and friction force as well as mass variations is used to illustrate the proposed method. A MACS-based LFFC system has been designed and implemented for the simulated plant. The system consists of a setpoint generator, a feedback controller, and a time-index LFFC that can learn on-line. Simulation results have demonstrated the applicability of the design method.


1992 ◽  
Vol 25 (25) ◽  
pp. 263-265
Author(s):  
B.R. Andrievsky ◽  
A.A. Vasiljev ◽  
V.N. Utkin

2011 ◽  
Vol 94 (1) ◽  
pp. 246-252 ◽  
Author(s):  
G. Catalanotti ◽  
P.P. Camanho ◽  
P. Ghys ◽  
A.T. Marques

2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Erhan Yumuk ◽  
Müjde Güzelkaya ◽  
İbrahim Eksin

Abstract In this study, a novel design method for half-cycle and modified posicast controller structures is proposed for a class of the fractional order systems. In this method, all required design variable values, namely, the input step magnitudes and their application times are obtained as functions of fractional system parameters. Moreover, empirical formulas are obtained for the overshoot values of the compensated system with half-cycle and modified posicast controllers designed utilizing this method. The proposed design methodology has been tested via simulations and ball balancing real-time system. It is observed that the derived formulas are in coherence with outcomes of the simulation and real-time application. Furthermore, the performance of modified posicast controller designed using proposed method is much better than other posicast control method.


Sign in / Sign up

Export Citation Format

Share Document