Service Life Prediction of RC Member in Chloride Environments under Different Loading Level

2013 ◽  
Vol 438-439 ◽  
pp. 491-496
Author(s):  
Yun Fen Feng ◽  
Jin Xin Gong ◽  
Xiao Yan Yang ◽  
Qin Zhang

Chloride ingress is a major factor affecting durability of reinforced concrete structures. In the present study, service life of a RC flexural member in chloride environments is predicted. First, model for service life is established considering model error and the coupling effects of loading condition and environmental factors on the chloride penetration. Then, service life is predicted in probabilistic framework of Monte Carlo simulation. The results show that the use of a lognormal distribution for the service life seems relevant; the service life shows a great scatterings.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Peng Zhang ◽  
Huaishuai Shang ◽  
Dongshuai Hou ◽  
Siyao Guo ◽  
Tiejun Zhao

In many cases, service life of reinforced concrete structures is severely limited by chloride penetration until the steel reinforcement or by carbonation of the covercrete. Water repellent treatment on the surfaces of cement-based materials has often been considered to protect concrete from these deteriorations. In this paper, three types of water repellent agents have been applied on the surface of concrete specimens. Penetration profiles of silicon resin in treated concrete have been determined by FT-IR spectroscopy. Water capillary suction, chloride penetration, carbonation, and reinforcement corrosion in both surface impregnated and untreated specimens have been measured. Results indicate that surface impregnation reduced the coefficient of capillary suction of concrete substantially. An efficient chloride barrier can be established by deep impregnation. Water repellent surface impregnation by silanes also can make the process of carbonation action slow. In addition, it also has been concluded that surface impregnation can provide effective corrosion protection to reinforcing steel in concrete with migrating chloride. The improvement of durability and extension of service life for reinforced concrete structures, therefore, can be expected through the applications of appropriate water repellent surface impregnation.


2012 ◽  
Vol 166-169 ◽  
pp. 1946-1953
Author(s):  
Xin Gang Zhou ◽  
Fang Zhao

According to investigations of apparent surface chloride contents and chloride penetration profile of concrete structures exposed to chloride environment, the influences of boundary and initial conditions, geometry parameters such as the geometry dimension and section shape, etc. were discussed. Based on the Fick’s second law of diffusion and different boundary and initial conditions, different analytical models to predict the chloride penetration profile in concrete structural members with different boundary and initial conditions were derived. Some calculations examples were made using those analytical models. Computational results show that the boundary and initial conditions have remarkable influences on chloride penetration profile and service life time of concrete structures. Using prevailing error-function solution model based on the semi-infinite assumption of chloride ingress, the prediction of service life time of concrete structures are over evaluated, in particular for the steel reinforcement in corner of the section. Some modify coefficients should be taken into consideration, concerning the influences of boundary and initial conditions.


This paper presents a specific case study for estimating the service life of structures contains Metakaolin concrete using the SA.Du2020 model. Reckoning the service life helps reinforce the discernibility of these buildings and controls some economic aspects. The case in consideration was applied to the data collected for a mix contains 15% Metakaolin. The physical and chemical features of metakaolin Concrete will be examined. Durability tests of metakaolin Concrete encompass chloride penetration, water permeability, abrasion, water absorption, bond resistance, corrosion resistance and concrete resistance tests. The results of the service life prediction provide a perspective for the expected life span of buildings of similar conditions. The total cost through the intended life has to be considered.


Sign in / Sign up

Export Citation Format

Share Document